Robustness of Difference Coarrays of Sparse Arrays to Sensor Failures—Part II: Array Geometries

In array processing, sparse arrays are capable of resolving <inline-formula><tex-math notation="LaTeX">$\mathcal {O}(N^2)$</tex-math></inline-formula> uncorrelated sources with <inline-formula><tex-math notation="LaTeX">$N$</tex-math></inline-formula> sensors. Sparse arrays have this property because they possess uniform linear array (ULA) segments of size <inline-formula><tex-math notation="LaTeX">$\mathcal {O}(N^2)$</tex-math></inline-formula> in the difference coarray, defined as the differences between sensor locations. However, the coarray structure of sparse arrays is susceptible to sensor failures and the reliability of sparse arrays remains a significant but challenging topic for investigation. In the companion paper, a theory of the <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>-essential family, the <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>-fragility, and the <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>-essential Sperner family were presented not only to characterize the patterns of <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula> faulty sensors that shrink the difference coarray, but also to provide a number of insights into the robustness of arrays. This paper derives closed-form characterizations of the <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>-essential Sperner family for several commonly used array geometries, such as ULA, minimum redundancy arrays (MRA), minimum holes arrays (MHA), Cantor arrays, nested arrays, and coprime arrays. These results lead to many insights into the relative importance of each sensor, the robustness of these arrays, and the DOA estimation performance in the presence of sensor failure. Broadly speaking, ULAs are more robust than coprime arrays, while coprime arrays are more robust than maximally economic sparse arrays, such as MRA, MHA, Cantor arrays, and nested arrays.

[1]  Arye Nehorai,et al.  Coarrays, MUSIC, and the Cramér–Rao Bound , 2016, IEEE Transactions on Signal Processing.

[2]  R. Pous,et al.  Fractal design of multiband and low side-lobe arrays , 1996 .

[3]  H. Smith,et al.  On the Integration of Discontinuous Functions , 1874 .

[4]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[5]  P. P. Vaidyanathan,et al.  Maximally economic sparse arrays and cantor arrays , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[6]  K. Falconer Fractal Geometry Mathematical Foundations and Applications Third , 2013 .

[7]  P. P. Vaidyanathan,et al.  Robustness of Difference Coarrays of Sparse Arrays to Sensor Failures—Part I: A Theory Motivated by Coarray MUSIC , 2019, IEEE Transactions on Signal Processing.

[8]  John R. Buck,et al.  Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array , 2014, EURASIP J. Adv. Signal Process..

[9]  Todd Silvestri Complex System Reliability , 2014 .

[10]  S. Haykin,et al.  Nonredundant arrays , 1986, Proceedings of the IEEE.

[11]  P. P. Vaidyanathan,et al.  Robustness of Coarrays of Sparse Arrays to Sensor Failures , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  P. P. Vaidyanathan,et al.  Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom , 2010, IEEE Transactions on Signal Processing.

[13]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[14]  Jorge L. Romeu,et al.  Practical Reliability Engineering , 2003, Technometrics.

[15]  Athanassios Manikas,et al.  Investigation of array robustness to sensor failure , 2005, J. Frankl. Inst..

[16]  D. Werner,et al.  An overview of fractal antenna engineering research , 2003 .

[17]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[18]  P. P. Vaidyanathan,et al.  Optimizing Minimum Redundancy Arrays for Robustness , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[19]  P. P. Vaidyanathan,et al.  Comparison of Sparse Arrays From Viewpoint of Coarray Stability and Robustness , 2018, 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[20]  D. Werner,et al.  The theory and design of fractal antenna arrays , 1999 .

[21]  Ahsan Raza,et al.  Thinned coprime arrays for DOA estimation , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[22]  Alexei Gorokhov,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Transactions on Signal Processing.

[23]  T. Minimum-Redundancy Linear Arrays , 2022 .

[24]  P. P. Vaidyanathan,et al.  Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors , 2017, Digit. Signal Process..

[25]  P. P. Vaidyanathan,et al.  Remarks on the Spatial Smoothing Step in Coarray MUSIC , 2015, IEEE Signal Processing Letters.

[26]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[27]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .