Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting.

[1]  P. Donaldson,et al.  Antioxidant Delivery Pathways in the Anterior Eye , 2013, BioMed research international.

[2]  C. Dethlefsen,et al.  Variation in the Sodium-Dependent Vitamin C Transporter 2 Gene Is Associated with Risk of Acute Coronary Syndrome among Women , 2013, PloS one.

[3]  P. Jong,et al.  Factors associated with serum/plasma concentrations of vitamins A, C, E and carotenoids in older people throughout Europe: the EUREYE study , 2013, European Journal of Nutrition.

[4]  J. Lykkesfeldt,et al.  Regulation of Vitamin C Homeostasis during Deficiency , 2013, Nutrients.

[5]  B. Frei,et al.  Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. , 2013, Annual review of nutrition.

[6]  F. Clavel-Chapelon,et al.  Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms, plasma vitamin C levels, and gastric cancer risk in the EPIC cohort , 2013, Genes & Nutrition.

[7]  D. Corella,et al.  Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma , 2013, Molecular vision.

[8]  L. Žorić,et al.  Antioxidant Capacity of Lenses with Age-Related Cataract , 2012, Oxidative medicine and cellular longevity.

[9]  Thulasiraj D Ravilla,et al.  Prevalence and Risk Factors for Vitamin C Deficiency in North and South India: A Two Centre Population Based Study in People Aged 60 Years and Over , 2011, PloS one.

[10]  D. Corella,et al.  Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population , 2011, Molecular vision.

[11]  Thulasiraj D Ravilla,et al.  Inverse Association of Vitamin C with Cataract in Older People in India , 2011, Ophthalmology.

[12]  Thulasiraj D Ravilla,et al.  Prevalence of Cataract in an Older Population in India , 2011, Ophthalmology.

[13]  Paul C. D. Johnson,et al.  Genetic variation at the SLC23A1 locus is associated with circulating concentrations of L-ascorbic acid (vitamin C): evidence from 5 independent studies with >15,000 participants. , 2010, The American journal of clinical nutrition.

[14]  L. Cahill,et al.  Vitamin C Transporter Gene Polymorphisms, Dietary Vitamin C and Serum Ascorbic Acid , 2010, Lifestyle Genomics.

[15]  R. Nussbaum,et al.  Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. , 2010, The Journal of clinical investigation.

[16]  A. Floegel,et al.  Estimation of antioxidant intakes from diet and supplements in U.S. adults. , 2010, The Journal of nutrition.

[17]  L. Hou,et al.  Genetic variation in sodium-dependent ascorbic acid transporters and risk of gastric cancer in Poland. , 2009, European journal of cancer.

[18]  Arthur C. Sanderson,et al.  Bladder cancer SNP panel predicts susceptibility and survival , 2009, Human Genetics.

[19]  R. Hayes,et al.  Genetic Variation in Sodium-Dependent Vitamin C Transporters SLC23A1 and SLC23A2 and Risk of Advanced Colorectal Adenoma , 2008, Nutrition and cancer.

[20]  E. Halperin,et al.  Polymorphisms in the Estrogen Receptor 1 and Vitamin C and Matrix Metalloproteinase Gene Families Are Associated with Susceptibility to Lymphoma , 2008, PloS one.

[21]  N. Baral,et al.  Plasma and aqueous humur ascorbic acid levels in people with cataract from diverse geographical regions of Nepal. , 2007, The Southeast Asian journal of tropical medicine and public health.

[22]  M. Worwood,et al.  Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases , 2007, International journal of laboratory hematology.

[23]  A. Olshan,et al.  Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery. , 2006, American journal of epidemiology.

[24]  A. Mitra,et al.  Mechanism of L-Ascorbic Acid Uptake by Rabbit Corneal Epithelial Cells: Evidence for the Involvement of Sodium-Dependent Vitamin C Transporter 2 , 2006, Current eye research.

[25]  John X. Wilson Regulation of vitamin C transport. , 2005, Annual review of nutrition.

[26]  S. Chanock,et al.  Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2 , 2004, Human Genetics.

[27]  M. Hediger,et al.  Sodium-dependent ascorbic acid transporter family SLC23 , 2004, Pflügers Archiv.

[28]  Alan L Robin,et al.  Lens opacities in a rural population of southern India: the Aravind Comprehensive Eye Study. , 2003, Investigative ophthalmology & visual science.

[29]  F. Shang,et al.  Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. , 2003, Free radical biology & medicine.

[30]  R. Nussbaum,et al.  Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival , 2002, Nature Medicine.

[31]  V. Ganapathy,et al.  Vitamin C transport in human lens epithelial cells: evidence for the presence of SVCT2. , 2001, Experimental eye research.

[32]  S. Weremowicz,et al.  Human vitamin C (L-ascorbic acid) transporter SVCT1. , 2000, Biochemical and biophysical research communications.

[33]  E. Hudes,et al.  Serum ascorbic acid and other correlates of self-reported cataract among older Americans. , 1999, Journal of clinical epidemiology.

[34]  Taro Tokui,et al.  A family of mammalian Na+-dependent L-ascorbic acid transporters , 1999, Nature.

[35]  W D Plummer,et al.  Power and sample size calculations for studies involving linear regression. , 1998, Controlled clinical trials.

[36]  M. D. De Buyzere,et al.  Effect of haptoglobin on the metabolism of vitamin C. , 1997, The American journal of clinical nutrition.

[37]  P. Jacques,et al.  Vitamin C in human and guinea pig aqueous, lens and plasma in relation to intake. , 1997, Current eye research.

[38]  B. Åkesson,et al.  Extracellular glutathione peroxidase and ascorbic acid in aqueous humor and serum of patients operated on for cataract. , 1997, Clinica chimica acta; international journal of clinical chemistry.

[39]  M. C. Leske,et al.  The Lens Opacities Classification System III , 1993 .

[40]  D. Garland,et al.  Ascorbic acid and the eye. , 1991, The American journal of clinical nutrition.

[41]  M. Levine,et al.  Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. , 1991, The American journal of clinical nutrition.

[42]  P. Jacques,et al.  Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma. , 1991, Current eye research.

[43]  R. Brubaker,et al.  Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. , 1986, Archives of ophthalmology.

[44]  B. Consul,et al.  Aqueous humor ascorbic acid in normal, cataractous and aphakic Indian subjects. , 1968, Journal of the All-India Ophthalmological Society.

[45]  H. Chinn,et al.  Biochemistry of the Lens , 1941 .

[46]  C. J. Farmer,et al.  BIOCHEMISTRY OF THE LENS: XII. STUDIES ON GLUTATHIONE IN THE CRYSTALLINE LENS , 1938 .

[47]  S. Gifford,et al.  The Biochemistry of the Lens , 1933 .

[48]  W. J. Dann,et al.  Estimation and Distribution of Ascorbic Acid (Vitamin C) and Glutathione in Animal Tissues , 1933, Nature.

[49]  D. Minassian,et al.  Blindness in India , 1930, The British journal of ophthalmology.

[50]  I. Birlouez-Aragon,et al.  Decrease in vitamin C concentration in human lenses during cataract progression. , 1998, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.

[51]  M. C. Leske,et al.  The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. , 1993, Archives of ophthalmology.