The Atacama Cosmology Telescope: limits on dark matter-baryon interactions from DR4 power spectra

Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background (CMB) provide constraints on such a coupling that complement laboratory searches. In this work we place upper limits on a variety of models for dark matter elastic scattering with protons and electrons by combining large-scale CMB data from the Planck satellite with small-scale information from Atacama Cosmology Telescope (ACT) DR4 data. In the case of velocity-independent scattering, we obtain bounds on the interaction cross section for protons that are 40% tighter than previous constraints from the CMB anisotropy. For some models with velocity-dependent scattering we find best-fitting cross sections with a 2σ deviation from zero, but these scattering models are not statistically preferred over ΛCDM in terms of model selection.

[1]  J. Lesgourgues,et al.  One likelihood to bind them all: Lyman-α constraints on non-standard dark matter , 2022, Journal of Cosmology and Astroparticle Physics.

[2]  H. Peiris,et al.  Limits on the Light Dark Matter-Proton Cross Section from Cosmic Large-Scale Structure. , 2021, Physical review letters.

[3]  D. C. Hooper,et al.  Hints of dark matter-neutrino interactions in Lyman-$\alpha$ data , 2021, 2110.04024.

[4]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: Constraints on Pre-Recombination Early Dark Energy , 2021, 2109.04451.

[5]  Yi-Ming Zhong,et al.  Cosmological constraints on dark matter interactions with ordinary matter , 2021, Physics Reports.

[6]  K. Boddy,et al.  Observational constraints on dark matter scattering with electrons , 2021, Physical Review D.

[7]  R. Wechsler,et al.  Bounds on Velocity-dependent Dark Matter–Proton Scattering from Milky Way Satellite Abundance , 2020, The Astrophysical Journal Letters.

[8]  D. Gerdes,et al.  Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. , 2021, Physical review letters.

[9]  V. C. Antochi,et al.  Projected WIMP sensitivity of the XENONnT dark matter experiment , 2020, Journal of Cosmology and Astroparticle Physics.

[10]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: DR4 maps and cosmological parameters , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz , 2020, Journal of Cosmology and Astroparticle Physics.

[12]  A. Lewis,et al.  Cobaya: code for Bayesian analysis of hierarchical physical models , 2020, Journal of Cosmology and Astroparticle Physics.

[13]  D. Gerdes,et al.  Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud , 2019, The Astrophysical Journal.

[14]  J. Dunkley,et al.  Data compression in cosmology: A compressed likelihood for Planck data , 2019, Physical Review D.

[15]  Mark Halpern,et al.  CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.

[16]  Benjamin Rose,et al.  Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics , 2019, 1903.04763.

[17]  H. R. Harris,et al.  Search for low-mass dark matter with CDMSlite using a profile likelihood fit , 2018, Physical Review D.

[18]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[19]  Tim Sprenger,et al.  The promising future of a robust cosmological neutrino mass measurement , 2018, Journal of Cosmology and Astroparticle Physics.

[20]  Ely D. Kovetz,et al.  Critical assessment of CMB limits on dark matter-baryon scattering: New treatment of the relative bulk velocity , 2018, Physical Review D.

[21]  Vera Gluscevic,et al.  Disentangling dark physics with cosmic microwave background experiments , 2018, Physical Review D.

[22]  Miguel Sofo Haro,et al.  SENSEI: First Direct-Detection Constraints on Sub-GeV Dark Matter from a Surface Run. , 2018, Physical review letters.

[23]  T. Slatyer,et al.  Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal , 2018, Physical Review D.

[24]  G. B. Suffritti,et al.  Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment. , 2018, Physical review letters.

[25]  Cora Dvorkin,et al.  Probing sub-GeV dark matter-baryon scattering with cosmological observables , 2018, Physical Review D.

[26]  Vera Gluscevic,et al.  First cosmological constraint on the effective theory of dark matter-proton interactions , 2018, Physical Review D.

[27]  Vera Gluscevic,et al.  Constraints on Scattering of keV-TeV Dark Matter with Protons in the Early Universe. , 2017, Physical review letters.

[28]  J. Lesgourgues,et al.  Interacting dark sector and precision cosmology , 2017, 1708.09406.

[29]  Ren'ee Hlovzek,et al.  Future CMB tests of dark matter: Ultralight axions and massive neutrinos , 2016, 1607.08208.

[30]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[31]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT , 2016, The Astrophysical Journal Supplement Series.

[32]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[33]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[34]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[35]  Cora Dvorkin,et al.  Constraining Dark Matter-Baryon Scattering with Linear Cosmology , 2013, 1311.2937.

[36]  Kris Sigurdson,et al.  Constraints on large-scale dark acoustic oscillations from cosmology , 2013, 1310.3278.

[37]  David E. Kaplan,et al.  New light species and the CMB , 2013, 1303.5379.

[38]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[39]  A. Fitzpatrick,et al.  Dark Moments and the DAMA-CoGeNT Puzzle , 2010, 1007.5325.

[40]  A. Boyarsky,et al.  The Role of Sterile Neutrinos in Cosmology and Astrophysics , 2008, 0901.0011.

[41]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[42]  Robert J. Scherrer,et al.  Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons , 2002, astro-ph/0202496.