Living on the edge: Simulations of bacterial outer-membrane proteins.

Gram-negative bacteria are distinguished in part by a second, outer membrane surrounding them. This membrane is distinct from others, possessing an outer leaflet composed not of typical phospholipids but rather large, highly charged molecules known as lipopolysaccharides. Therefore, modeling the structure and dynamics of proteins embedded in the outer membrane requires careful consideration of their native environment. In this review, we examine how simulations of such outer-membrane proteins have evolved over the last two decades, culminating most recently in detailed, highly accurate atomistic models of the outer membrane. We also draw attention to how the simulations have coupled with experiments to produce novel insights unattainable through a single approach. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

[1]  Wonpil Im,et al.  E. coli outer membrane and interactions with OmpLA. , 2014, Biophysical journal.

[2]  E. Tajkhorshid,et al.  Coupling of calcium and substrate binding through loop alignment in the outer-membrane transporter BtuB. , 2009, Journal of molecular biology.

[3]  J. Eswaran,et al.  Structure and function of TolC: the bacterial exit duct for proteins and drugs. , 2004, Annual review of biochemistry.

[4]  S. Buchanan,et al.  TonB-dependent transporters: regulation, structure, and function. , 2010, Annual review of microbiology.

[5]  L. Tamm,et al.  Folding and assembly of β-barrel membrane proteins , 2004 .

[6]  Gabriel Waksman,et al.  Secretion systems in Gram-negative bacteria: structural and mechanistic insights , 2015, Nature Reviews Microbiology.

[7]  O. Tapia,et al.  L3 loop-mediated mechanisms of pore closing in porin: a molecular dynamics perturbation approach. , 1995, Protein engineering.

[8]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[9]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  On the stability and plastic properties of the interior L3 loop in R. capsulatus porin. A molecular dynamics study. , 1994, Protein engineering.

[11]  T. Rapoport Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes , 2007, Nature.

[12]  M. Karplus,et al.  Computer simulations of the OmpF porin from the outer membrane of Escherichia coli. , 1997, Biophysical journal.

[13]  David P. Chimento,et al.  Substrate-induced transmembrane signaling in the cobalamin transporter BtuB , 2003, Nature Structural Biology.

[14]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[15]  J. S. St. Geme,et al.  The Haemophilus influenzae Hia Adhesin Is an Autotransporter Protein That Remains Uncleaved at the C Terminus and Fully Cell Associated , 2000, Journal of bacteriology.

[16]  T. Piggot,et al.  Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. , 2011, The journal of physical chemistry. B.

[17]  Dennis Gessmann,et al.  Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA , 2014, Proceedings of the National Academy of Sciences.

[18]  Dennis Gessmann,et al.  Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm , 2013, Proceedings of the National Academy of Sciences.

[19]  Andrei L. Lomize,et al.  Anisotropic Solvent Model of the Lipid Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in Membranes , 2011, J. Chem. Inf. Model..

[20]  Anne A. Ollis,et al.  Death of the TonB Shuttle Hypothesis , 2011, Front. Microbio..

[21]  R. Lins,et al.  A Glycam-Based Force Field for Simulations of Lipopolysaccharide Membranes: Parametrization and Validation. , 2012, Journal of chemical theory and computation.

[22]  D. Cafiso,et al.  Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex. , 2013, Biochemistry.

[23]  Matthieu Chavent,et al.  Molecular Simulations of Gram-Negative Bacterial Membranes: A Vignette of Some Recent Successes. , 2015, Biophysical journal.

[24]  Xiaomin Luo,et al.  Dynamic mechanism of fatty acid transport across cellular membranes through FadL: molecular dynamics simulations. , 2008, The journal of physical chemistry. B.

[25]  Bert van den Berg,et al.  Transmembrane passage of hydrophobic compounds through a protein channel wall , 2009, Nature.

[26]  Jeffrey J. Gray,et al.  Computational modeling of membrane proteins , 2015, Proteins.

[27]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[28]  B. Berg Lateral gates: β-barrels get in on the act , 2013, Nature Structural &Molecular Biology.

[29]  R. Lins,et al.  The Effect of Temperature, Cations, and Number of Acyl Chains on the Lamellar to Non-Lamellar Transition in Lipid-A Membranes: A Microscopic View. , 2012, Journal of chemical theory and computation.

[30]  U. Kleinekathöfer,et al.  Transitions between closed and open conformations of TolC: the effects of ions in simulations. , 2009, Biophysical journal.

[31]  E. Tajkhorshid,et al.  Structural basis for iron piracy by pathogenic Neisseria , 2012, Nature.

[32]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[33]  R. Kadner,et al.  Touch and go: tying TonB to transport , 2003, Molecular microbiology.

[34]  Mark S.P. Sansom,et al.  Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria , 2015, Nature.

[35]  P. Stansfeld,et al.  Structural basis for outer membrane lipopolysaccharide insertion , 2014, Nature.

[36]  T. Straatsma,et al.  Influence of the B-band O-antigen chain in the structure and electrostatics of the lipopolysaccharide membrane of Pseudomonas aeruginosa , 2008 .

[37]  T. Straatsma,et al.  Assessment of the convergence of molecular dynamics simulations of lipopolysaccharide membranes , 2008 .

[38]  D. Cafiso,et al.  The N-terminal domain of a TonB-dependent transporter undergoes a reversible stepwise denaturation. , 2012, Biochemistry.

[39]  L. Kotra,et al.  Dynamics of the Lipopolysaccharide Assembly on the Surface of Escherichia coli , 1999 .

[40]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[41]  M. Paetzel,et al.  The bacterial outer membrane β‐barrel assembly machinery , 2012, Protein Science.

[42]  S. Funari,et al.  Investigation into the acyl chain packing of endotoxins and phospholipids under near physiological conditions by WAXS and FTIR spectroscopy. , 1999, Journal of structural biology.

[43]  T. Piggot,et al.  Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment. , 2013, Biochimica et biophysica acta.

[44]  Alexander D. MacKerell,et al.  Lipopolysaccharide membrane building and simulation. , 2015, Methods in molecular biology.

[45]  O. Berger,et al.  Structure and fluctuations of bacteriorhodopsin in the purple membrane: a molecular dynamics study. , 1995, Journal of molecular biology.

[46]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[47]  T. Silhavy,et al.  β-Barrel membrane protein assembly by the Bam complex. , 2011, Annual review of biochemistry.

[48]  A. M. Stanley,et al.  β-Barrel Proteins That Reside in the Escherichia coli Outer Membrane in Vivo Demonstrate Varied Folding Behavior in Vitro* , 2008, Journal of Biological Chemistry.

[49]  José D Faraldo-Gómez,et al.  Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. , 2003, Biophysical journal.

[50]  S. Buchanan,et al.  Lateral opening and exit pore formation are required for BamA function. , 2014, Structure.

[51]  T. Piggot,et al.  Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study. , 2013, Biochimica et biophysica acta.

[52]  Trevor Lithgow,et al.  Structural insight into the biogenesis of β-barrel membrane proteins , 2013, Nature.

[53]  J. Tommassen,et al.  Biogenesis of the Gram-negative bacterial outer membrane. , 2004, Current opinion in microbiology.

[54]  Haohao Dong,et al.  Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane , 2015, Scientific Reports.

[55]  M. Sansom,et al.  Gating at both ends and breathing in the middle: conformational dynamics of TolC. , 2008, Biophysical journal.

[56]  C. Whitfield,et al.  Biosynthesis and export of bacterial lipopolysaccharides. , 2014, Annual review of biochemistry.

[57]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[58]  Roland L. Dunbrack,et al.  Charge asymmetry in the proteins of the outer membrane , 2013, Bioinform..

[59]  G. Widmalm,et al.  Dynamics of exocyclic groups in the Escherichia coli O91 O-antigen polysaccharide in solution studied by carbon-13 NMR relaxation , 2013, Journal of biomolecular NMR.

[60]  B. van den Berg,et al.  Ligand-gated diffusion across the bacterial outer membrane , 2011, Proceedings of the National Academy of Sciences.

[61]  Benjamin D. Madej,et al.  Lipid14: The Amber Lipid Force Field , 2014, Journal of chemical theory and computation.

[62]  Sunhwan Jo,et al.  Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. , 2013, Biophysical journal.

[63]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[64]  James Gumbart,et al.  Mechanics of force propagation in TonB-dependent outer membrane transport. , 2007, Biophysical journal.

[65]  Yihua Huang,et al.  Structural basis for lipopolysaccharide insertion in the bacterial outer membrane , 2014, Nature.

[66]  G. Widmalm,et al.  Dynamics of the Escherichia coli O91 O-antigen polysaccharide in solution as studied by carbon-13 NMR relaxation. , 2004, Biomacromolecules.

[67]  K. Pothula,et al.  Simulations of outer membrane channels and their permeability. , 2016, Biochimica et biophysica acta.

[68]  Walter L Ash,et al.  Computer simulations of membrane proteins. , 2004, Biochimica et biophysica acta.

[69]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[70]  Bert L. de Groot,et al.  Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments , 2007, European Biophysics Journal.

[71]  Thomas J. Piggot,et al.  Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. , 2012, Journal of chemical theory and computation.

[72]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[73]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..

[74]  Gabriel Waksman,et al.  Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter , 2006, The EMBO journal.

[75]  Y. Komeiji,et al.  Computational Observation of an Ion Permeation Through a Channel Protein , 1998, Bioscience reports.

[76]  T. Rapoport,et al.  Crystal Structure of the Long-Chain Fatty Acid Transporter FadL , 2004, Science.

[77]  Z. Jia,et al.  Novel structure of the conserved gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. , 2008, Journal of molecular biology.

[78]  Alexander D. MacKerell,et al.  Development of the CHARMM Force Field for Lipids. , 2011, The journal of physical chemistry letters.

[79]  Emily J. Danoff,et al.  Membrane Defects Accelerate Outer Membrane β-Barrel Protein Folding , 2014, Biochemistry.

[80]  N. Majdalani,et al.  Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens. , 2016, Structure.

[81]  T. Straatsma,et al.  Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation , 2009, Proteins.

[82]  Roberto D Lins,et al.  Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. , 2008, Biomacromolecules.

[83]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[84]  Peter J Bond,et al.  The simulation approach to bacterial outer membrane proteins (Review) , 2004, Molecular membrane biology.

[85]  Christian Kandt,et al.  Locked on one side only: ground state dynamics of the outer membrane efflux duct TolC. , 2012, Biochemistry.

[86]  K. Schulten,et al.  Molecular dynamics simulations of membrane channels and transporters. , 2009, Current opinion in structural biology.

[87]  E. Tajkhorshid,et al.  Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter. , 2012, Journal of molecular biology.

[88]  Klaus Schulten,et al.  Molecular dynamics simulations of proteins in lipid bilayers. , 2005, Current opinion in structural biology.

[89]  P. Black,et al.  Bacterial Long Chain Fatty Acid Transport: Gateway to a Fatty Acid-responsive Signaling System* , 2004, Journal of Biological Chemistry.