Effect of B4C, TiB2 and ZrSiO4 ceramic particles on mechanical properties of aluminium matrix composites: Experimental investigation and predictive modelling

This paper focuses on the influence of processing temperature and inclusion of micron-sized B4C, TiB2 and ZrSiO4 on the mechanical performance of aluminium matrix composites fabricated through stir casting. The ceramic/aluminium composite could withstand greater external loads, due to interfacial ceramic/aluminium bonding effect on the movement of grain and twin boundaries. Based on experimental results, the tensile strength and hardness of ceramic reinforced composite are significantly increased. The maximum improvement is achieved through adding ZrSiO4 and TiB2, which has led to 52% and 125% increase in tensile strength and hardness, respectively. To predict the effect of incorporating ceramic reinforcements on the mechanical properties of composites, experimental data of mechanical tests are used to create 3 models named Levenberg-Marquardt Algorithm (LMA) neural networks. The results show that the LMA- neural networks models have a high level of accuracy in the prediction of mechanical properties for ceramic reinforced-aluminium matrix composites.

[1]  S. Lim,et al.  High-speed tribological properties of some Al/SiCp composites: I. Frictional and wear-rate characteristics , 1999 .

[2]  Reza Teimouri,et al.  Statistical analysis and multiobjective optimization of process parameters in plasma spraying of partially stabilized zirconia , 2014 .

[3]  K. Balasubramanian,et al.  Boron carbide-reinforced alumnium 1100 matrix composites: Fabrication and properties , 2008 .

[4]  C. Hsueh Young's modulus of unidirectional discontinuous-fibre composites☆ , 2000 .

[5]  M. A. Xavior,et al.  Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing , 2014 .

[6]  Z. Chen,et al.  Microstructure and properties of In situ Al/TiB2 composite fabricated by in-melt reaction method , 2000 .

[7]  Shubham Sharma The sliding wear behavior of Al6061–garnet particulate composites , 2001 .

[8]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[9]  Chung-Gil Kang,et al.  An investigation of flow characteristics considering the effect of viscosity variation in the thixoforming process , 2000 .

[10]  H. Akbulut,et al.  Dry wear and friction properties of δ-Al2O3 short fiber reinforced AlSi (LM 13) alloy metal matrix composites , 1998 .

[11]  R. Stevens,et al.  Stress-induced microstructural defects in a 15% SiC aluminium alloy metal-matrix composite , 1992 .

[12]  M. K. Surappa,et al.  Wear and abrasion of cast Al-Alumina particle composites , 1982 .

[13]  Reza Teimouri,et al.  Development empirical-intelligent relationship between plasma spray parameters and coating performance of Yttria-Stabilized Zirconia , 2015 .

[14]  M. Suéry,et al.  Interfacial reactions and age hardening in AlMgSi metal matrix composites reinforced with SiC particles , 1994 .

[15]  A. Çanakçı Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites , 2011 .

[16]  A. K. Jha,et al.  Studies on cold upsetting behaviour of AA2014-based metal matrix composites, FEM simulation, and comparison with experimental results , 2010 .

[17]  H. Akbulut,et al.  Production and characterisation of silicon carbide particulate reinforced aluminium–copper alloy matrix composites by direct squeeze casting method , 2007 .

[18]  Rong Chen,et al.  Casting defects and properties of cast A356 aluminium alloy reinforced with SiC particles , 1993 .

[19]  K. Shirvanimoghaddam,et al.  Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites , 2015 .

[20]  P. Rohatgi,et al.  On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process , 2015, Metallurgical and Materials Transactions A.

[21]  S. Kumar,et al.  Mechanical properties of SiCp/Al2O3 ceramic matrix composites prepared by directed oxidation of an aluminum alloy , 2012 .

[22]  A. Alpas,et al.  Wear rate transitions in cast aluminum-silicon alloys reinforced with SiC particles , 1992 .

[23]  A. Sato,et al.  Aluminum matrix composites: Fabrication and properties , 1976 .

[24]  G. Jennings,et al.  An energy dispersive x‐ray absorption spectroscopy beamline, X6A, at NSLS , 1994 .

[25]  Wei Zhou,et al.  Casting of SiC reinforced metal matrix composites , 1997 .

[26]  R. Mishra,et al.  Steady state creep behaviour of particulate-reinforced titanium matrix composites , 1996 .

[27]  W. Fei,et al.  Effect of interfacial reaction on the thermal expansion behavior of β-eucryptite particle and aluminum borate whisker reinforced 6061 aluminum alloy composite , 2002 .

[28]  Z. Ranjbar,et al.  Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings , 2015, Journal of Coatings Technology and Research.

[29]  Yu Zhou,et al.  Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering , 2004 .

[30]  J. T. Staley,et al.  On macrohardness testing of Al–7 wt.% Si–Mg alloys: II. An evaluation of models for hardness–yield strength relationships , 2003 .

[31]  H. Abdizadeh,et al.  Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO , 2009 .

[32]  Hamid Khayyam,et al.  Dynamic Prediction Models and Optimization of Polyacrylonitrile (PAN) Stabilization Processes for Production of Carbon Fiber , 2015, IEEE Transactions on Industrial Informatics.

[33]  Hossein Abdizadeh,et al.  Development of high-performance A356/nano-Al2O3 composites , 2009 .

[34]  Ahmad Mayyas,et al.  Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network , 2009 .

[35]  Huiyuan Wang,et al.  In situ synthesis of TiC/Mg composites in molten magnesium , 2003 .

[36]  Jianfu Zhang,et al.  Ultrasonic vibration-assisted scratch characteristics of silicon carbide-reinforced aluminum matrix composites , 2014 .

[37]  Hamid Khayyam,et al.  Stochastic optimization models for energy management in carbonization process of carbon fiber production , 2015 .

[38]  H. Baharvandi,et al.  Fabrication and Studying the Mechanical Properties of A356 Alloy Reinforced with Al 2 O 3 -10% Vol. ZrO 2 Nano-particles through Stir Casting , 2011 .

[39]  L. C. Davis,et al.  Microstructure and strengthening of metal matrix composites , 1998 .

[40]  Di Zhang,et al.  Fabrication of diamond/aluminum composites by vacuum hot pressing: Process optimization and thermal properties , 2013 .

[41]  H. Abdizadeh,et al.  Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method , 2011 .

[42]  Hamid Khayyam Stochastic Models of Road Geometry and Wind Condition for Vehicle Energy Management and Control , 2013, IEEE Transactions on Vehicular Technology.

[43]  V. Aigbodion,et al.  Evaluation of Al–Cu–Mg alloy/bean pod ash nanoparticles synthesis by double layer feeding–stir casting method , 2014 .

[44]  Qiang Shen,et al.  Microstructure and mechanical properties of Al-7075/B4C composites fabricated by plasma activated sintering , 2014 .

[45]  M. Naebe,et al.  Novel polymer-ceramic composites for protection against ballistic fragments , 2013 .

[46]  Barbara Previtali,et al.  Application of traditional investment casting process to aluminium matrix composites , 2008 .

[47]  K. Shirvanimoghaddam,et al.  Wear and friction behavior of nanosized TiB 2 and TiO 2 particle-reinforced casting A356 aluminum nanocomposites: A comparative study focusing on particle capture in matrix , 2015 .

[48]  H. Farhangi,et al.  INFLUENCE OF EXTRUSION RATIO ON THE MECHANICAL BEHAVIOR OF AA6061/SIC COMPOSITES , 2009 .

[49]  M.S.J. Hashmi,et al.  The enhancement of wettability of SiC particles in cast aluminium matrix composites , 2001 .

[50]  S. Tjong,et al.  In Situ ceramic particle-reinforced aluminum matrix composites fabricated by reaction pressing in the TiO2 (Ti)-Al-B (B2O3) systems , 1997 .

[51]  A. Samuel,et al.  Effect of solidification rate and metal feedability on porosity and SiCAl2O3 particle distribution in an Al-Si-Mg (359) alloy , 1995 .

[52]  H. Baharvandi,et al.  Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method , 2013 .

[53]  O. Pandey,et al.  Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites , 2013 .

[54]  K. Önel,et al.  The production of AlSi alloy-SiCp composites via compocasting: some microstructural aspects , 1996 .

[55]  S. Skolianos,et al.  Tribological properties of SiCp-reinforced Al-4.5% Cu-1.5% Mg alloy composites , 1993 .

[56]  F. Ajersch,et al.  Rheological model of semi-solid A356-SiC composite alloys. Part I: Dissociation of agglomerate structures during shear , 1996 .

[57]  A. Ghias,et al.  Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites , 2014 .

[58]  H. Abdizadeh,et al.  Comparing the effect of processing temperature on microstructure and mechanical behavior of (ZrSiO4 or TiB2)/aluminum composites , 2008 .