A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics

A numerical framework is developed for consistent integrations of the soundproof and fully compressible nonhydrostatic equations of motion for all-scale atmospheric flows; i.e., low Mach number, high Reynolds number, rotating stratified flows under gravity. The reduced anelastic and pseudo-incompressible soundproof equations and the fully compressible Euler equations are combined into a common form of conservation laws for mass, momentum and entropy that facilitates the design of a sole principal algorithm for its integration, with minimal alterations for accommodating each special case. The development extends a proven numerical framework for integrating the soundproof equations. It relies on non-oscillatory forward-in-time transport methods, applied consistently to all dependent variables of the system at hand, and with buoyant and rotational modes of motion treated implicitly in the integration. When the fully compressible equations are solved, the framework admits congruent schemes with explicit or implicit representation of acoustic modes, so the former can provide a reference for the latter. The consistency of the framework minimises the numerical differences between the soundproof and compressible integrators, thus admitting conclusive comparisons between compressible and soundproof solutions, unobscured by algorithmic disparities. For the large-time-step implicit schemes, technical differences between the soundproof and compressible integrators reduce to the selection of either a prescribed or a numerically prognosed density, and extension of the generalised Poisson solver to a bespoke Helmholtz solver. The numerical advancements and merits of the approach are illustrated with canonical simulations of planetary baroclinic instability, an archetype of global weather, and the breaking of a deep stratospheric gravity waves, an example of nonhydrostatic mesoscale dynamics.

[1]  P. Smolarkiewicz,et al.  The multidimensional positive definite advection transport algorithm: further development and applications , 1986 .

[2]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[3]  C. Konor Design of a Dynamical Core Based on the Nonhydrostatic “Unified System” of Equations* , 2014 .

[4]  Robert Scheichl,et al.  Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction , 2013, ArXiv.

[5]  René Laprise,et al.  Regional climate modelling , 2008, J. Comput. Phys..

[6]  Andrzej A. Wyszogrodzki,et al.  An implicitly balanced hurricane model with physics-based preconditioning , 2005 .

[7]  Babatunde J. Abiodun,et al.  Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part I: comparison of dynamics cores in aqua-planet simulations , 2008 .

[8]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[9]  Paul Charbonneau,et al.  MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION , 2010 .

[10]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[11]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[12]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[13]  Joanna Szmelter,et al.  Iterated upwind schemes for gas dynamics , 2009, J. Comput. Phys..

[14]  P. Smolarkiewicz,et al.  Solitary wave effects north of Strait of Messina , 2007 .

[15]  D. Durran A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow , 2008, Journal of Fluid Mechanics.

[16]  T. Cullen,et al.  Global existence of solutions for the relativistic Boltzmann equation on the flat Robertson-Walker space-time for arbitrarily large intial data , 2005, gr-qc/0507035.

[17]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[18]  J. Prusa,et al.  Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part II: dynamical influences on ITCZ behavior and tropical precipitation , 2008 .

[19]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[20]  Jean Côté,et al.  The CMC-MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation , 2002 .

[21]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[22]  Piotr K. Smolarkiewicz,et al.  A class of monotone interpolation schemes , 1992 .

[23]  Nils Wedi,et al.  Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO , 2006 .

[24]  Joanna Szmelter,et al.  MPDATA error estimator for mesh adaptivity , 2006 .

[25]  P. Smolarkiewicz,et al.  Conservative integrals of adiabatic Durran's equations , 2008 .

[26]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[27]  Nils Wedi,et al.  A framework for testing global non‐hydrostatic models , 2009 .

[28]  Dale R. Durran,et al.  Selective monotonicity preservation in scalar advection , 2008, J. Comput. Phys..

[29]  Joanna Szmelter,et al.  An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..

[30]  P. Smolarkiewicz Modeling atmospheric circulations with soundproof equations , 2008 .

[31]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[32]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[33]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..

[34]  R. Klein Asymptotics, structure, and integration of sound-proof atmospheric flow equations , 2009 .

[35]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[36]  Frank B. Lipps On the anelastic approximation for deep convection , 1990 .

[37]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[38]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[39]  Omar M. Knio,et al.  Regime of Validity of Soundproof Atmospheric Flow Models , 2010 .

[40]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[41]  Piotr K. Smolarkiewicz,et al.  Spectral Preconditioners for nonhydrostatic atmospheric models: extreme applications [presentation] , 2004 .

[42]  M. Cullen A test of a semi‐implicit integration technique for a fully compressible non‐hydrostatic model , 1990 .

[43]  J. Szmelter,et al.  MPDATA: An edge-based unstructured-grid formulation , 2005 .

[44]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[45]  C. J. Cotter,et al.  Variational formulations of sound-proof models , 2013 .

[46]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[47]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[48]  C. Schär,et al.  A Synchronous and Iterative Flux-Correction Formalism for Coupled Transport Equations , 1996 .

[49]  Terry Davies,et al.  Validity of anelastic and other equation sets as inferred from normal‐mode analysis , 2003 .

[50]  R. Klein,et al.  Gravity waves, scale asymptotics and the pseudo-incompressible equations , 2010, Journal of Fluid Mechanics.

[51]  M. Tapp,et al.  A non‐hydrostatic mesoscale model , 1976 .

[52]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[53]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[54]  D. Durran Improving the Anelastic Approximation , 1989 .

[55]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[56]  Pierre Benard,et al.  Stability of Semi-Implicit and Iterative Centered-Implicit Time Discretizations for Various Equation Systems Used in NWP , 2003, physics/0304114.

[57]  R. Klein,et al.  Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .

[58]  Paul Charbonneau,et al.  EULAG, a computational model for multiscale flows: An MHD extension , 2013, J. Comput. Phys..

[59]  Piotr K. Smolarkiewicz,et al.  Towards petascale simulation of atmospheric circulations with soundproof equations , 2011 .

[60]  P. Smolarkiewicz,et al.  Toward Multiscale Simulation of Moist Flows with Soundproof Equations , 2013 .

[61]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[62]  N. Wedi,et al.  Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries , 2004 .

[63]  J. Szmelter,et al.  A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves , 2011 .

[64]  T. Clark A small-scale dynamic model using a terrain-following coordinate transformation , 1977 .

[65]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[66]  Joanna Szmelter,et al.  An MPDATA‐based solver for compressible flows , 2008 .

[67]  Rupert Klein,et al.  Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .

[68]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[69]  R. Klein On the regime of validity of sound-proof model equations for atmospheric flows , 2010 .

[70]  D. Williamson,et al.  A baroclinic instability test case for atmospheric model dynamical cores , 2006 .

[71]  Rupert Klein,et al.  A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics , 2014 .

[72]  Joanna Szmelter,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..

[73]  A. Arakawa,et al.  Unification of the Anelastic and Quasi-Hydrostatic Systems of Equations , 2009 .

[74]  T. Clark,et al.  Severe Downslope Windstorm Calculations in Two and Three Spatial Dimensions Using Anelastic Interactive Grid Nesting: A Possible Mechanism for Gustiness , 1984 .

[75]  R. Garcia,et al.  Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing , 1996 .

[76]  Nigel Wood,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretisation of the shallow‐water equations on the sphere , 2009 .

[77]  Luca Bonaventura,et al.  Review of numerical methods for nonhydrostatic weather prediction models , 2003 .

[78]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[79]  P. Colella,et al.  A Projection Method for Low Speed Flows , 1999 .

[80]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .