Black holes in an asymptotically safe gravity theory with higher derivatives

We present a class of spherically symmetric vacuum solutions to an asymptotically safe theory of gravity containing high-derivative terms. We find quantum corrected Schwarzschild-(anti)-de Sitter solutions with running gravitational coupling parameters. The evolution of the couplings is determined by their corresponding renormalization group flow equations. These black holes exhibit properties of a classical Schwarzschild solution at large length scales. At the center, the metric factor remains smooth but the curvature singularity, while softened by the quantum corrections, persists. The solutions have an outer event horizon and an inner Cauchy horizon which equate when the physical mass decreases to a critical value. Super-extremal solutions with masses below the critical value correspond to naked singularities. The Hawking temperature of the black hole vanishes when the physical mass reaches the critical value. Hence, the black holes in the asymptotically safe gravitational theory never completely evaporate. For appropriate values of the parameters such stable black hole remnants make excellent dark matter candidates.

[1]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[2]  Daniel F. Litim,et al.  Black holes and asymptotically safe gravity , 2010, 1002.0260.

[3]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[4]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[5]  K. Schwarzschild “Golden Oldie”: On the Gravitational Field of a Mass Point According to Einstein's Theory , 1999, physics/9905030.

[6]  Stephen W. Hawking,et al.  Particle Creation by Black Holes , 1993, Resonance.

[7]  Daniel F. Litim Critical exponents from optimised renormalisation group flows , 2002 .

[8]  Yoshihisa Kitazawa,et al.  Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity☆ , 1993 .

[9]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[10]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[11]  M. Ninomiya,et al.  Quantum Gravity in 2+ Dimensions , 1993 .

[12]  A. Barvinsky,et al.  Asymptotic freedom in higher-derivative quantum gravity , 1985 .

[13]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[14]  F. Wilczek,et al.  Hawking radiation As tunneling , 1999, Physical review letters.

[15]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[16]  Viale Andrea Doria,et al.  Renormalization group improved black hole spacetimes , 2000 .

[17]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[18]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[19]  M.Reuter Nonperturbative Evolution Equation for Quantum Gravity , 1996, hep-th/9605030.

[20]  Ilya L. Shapiro,et al.  Higher derivative quantum gravity with Gauss-Bonnet term , 2005 .

[21]  M. Sasaki,et al.  Tensor ghosts in the inflationary cosmology , 2009, 0907.3868.

[22]  Particle production and complex path analysis , 1998, gr-qc/9812028.

[23]  Howard Georgi,et al.  Effective Field Theory , 1993 .

[24]  A nonsingular two dimensional black hole , 1993, hep-th/9305111.

[25]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[26]  K. Stelle Classical gravity with higher derivatives , 1978 .

[27]  M. Tonin,et al.  Quantum gravity with higher derivative terms , 1978 .

[28]  Hawking radiation of nonsingular black holes in two dimensions , 2002, hep-th/0210016.

[29]  K. Schwarzschild,et al.  On the gravitational field of a sphere of incompressible fluid according to Einstein's theory , 1999, physics/9912033.

[30]  S. Weinberg Asymptotically Safe Inflation , 2009, 0911.3165.

[31]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[32]  Steven Weinberg,et al.  Critical Phenomena for Field Theorists , 1978 .

[33]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[34]  A. Salam,et al.  Remarks on high-energy stability and renormalizability of gravity theory , 1978 .

[35]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[36]  F. Saueressig,et al.  Four‐derivative Interactions in Asymptotically Safe Gravity , 2009, 0909.3265.

[37]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[38]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[39]  A. Bonanno Astrophysical implications of the Asymptotic Safety Scenario in Quantum Gravity , 2009, 0911.2727.