Control-Enhanced Sequential Scheme for General Quantum Parameter Estimation at the Heisenberg Limit.

The advantage of quantum metrology has been experimentally demonstrated for phase estimations where the dynamics are commuting. General noncommuting dynamics, however, can have distinct features. For example, the direct sequential scheme, which can achieve the Heisenberg scaling for the phase estimation under commuting dynamics, can have even worse performances than the classical scheme when the dynamics are noncommuting. Here we realize a scalable optimally controlled sequential scheme, which can achieve the Heisenberg precision under general noncommuting dynamics. We also present an intuitive geometrical framework for the controlled scheme and identify sweet spots in time at which the optimal controls used in the scheme can be prefixed without adaptation, which simplifies the experimental protocols significantly. We successfully implement the scheme up to eight controls in an optical platform and demonstrate a precision near the Heisenberg limit. Our work opens the avenue for harvesting the power of quantum control in quantum metrology, and provides a control-enhanced recipe to achieve the Heisenberg precision under general noncommuting dynamics.

[1]  Andrew N. Jordan,et al.  Optimal adaptive control for quantum metrology with time-dependent Hamiltonians , 2016, Nature Communications.

[2]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[3]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[4]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[5]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  Haidong Yuan,et al.  Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation. , 2015, Physical review letters.

[7]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[8]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[9]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[10]  R. Simon,et al.  Minimal three-component SU(2) gadget for polarization optics , 1990 .

[11]  Guang-Can Guo,et al.  Error-compensation measurements on polarization qubits , 2015, 1503.00263.

[12]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[13]  Todd A. Brun,et al.  Quantum metrology for a general Hamiltonian parameter , 2014, 1407.6091.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[16]  Haidong Yuan Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.

[17]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[18]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[19]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[20]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[21]  M. Markham,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[22]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[23]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[24]  Dorje C. Brody,et al.  Information Geometry of Complex Hamiltonians and Exceptional Points , 2013, Entropy.

[25]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[26]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[27]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[28]  Chi-Hang Fred Fung,et al.  Quantum parameter estimation with general dynamics , 2015, 1506.01909.

[29]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[30]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[31]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[32]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[33]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[34]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[35]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[36]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[37]  Keiji Sasaki,et al.  Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers , 2008, 0804.0087.