Field reduction and linear sets in finite geometry
暂无分享,去创建一个
[1] R. C. Bose,et al. The construction of translation planes from projective spaces , 1964 .
[2] J. Thas,et al. General Galois geometries , 1992 .
[3] Geertrui Van de Voorde,et al. A small minimal blocking set in PG(n, pt), spanning a (t − 1)-space, is linear , 2013, Des. Codes Cryptogr..
[4] Jacques Tits,et al. Buildings of Spherical Type and Finite BN-Pairs , 1974 .
[5] Michel Lavrauw,et al. Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..
[6] M. Lavrauw. Finite semifields with a large nucleus and higher secant varieties to Segre varieties , 2011 .
[7] Shane Kelly,et al. Constructions of intriguing sets of polar spaces from field reduction and derivation , 2007, Des. Codes Cryptogr..
[8] Michel Lavrauw,et al. Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .
[9] Guglielmo Lunardon,et al. Translation ovoids of orthogonal polar spaces , 2004 .
[10] Leo Storme,et al. On 1-Blocking Sets in PG(n,q), n ≥ 3 , 2000, Des. Codes Cryptogr..
[11] Geertrui Van de Voorde. On the Linearity of Higher-Dimensional Blocking Sets , 2010, Electron. J. Comb..
[12] Johannes André,et al. Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .
[13] T. Szonyi,et al. Small point sets of PG(n, p3h) intersecting each line in 1 mod ph points , 2010 .
[14] Péter Sziklai,et al. On small blocking sets and their linearity , 2008, J. Comb. Theory, Ser. A.
[15] Tamás Szonyi,et al. Small Blocking Sets in Higher Dimensions , 2001, J. Comb. Theory, Ser. A.
[16] Udo Heim,et al. Proper blocking sets in projective spaces , 1997, Discret. Math..
[17] M. Lavrauw,et al. Finite Semifields and Galois Geometry ∗ , 2011 .
[18] Zsuzsa Weiner. Small point sets of PG(n,q) intersecting eachk-space in 1 modulo points , 2005 .
[19] Olga Polverino. Small Blocking Sets in PG(2, p) , 2000, Des. Codes Cryptogr..
[20] Michel Lavrauw,et al. A proof of the linearity conjecture for k-blocking sets in PG(n, p3), p prime , 2011, J. Comb. Theory, Ser. A.
[21] G. Marino,et al. Solution to An Isotopism Question Concerning Rank 2 Semifields , 2013, 1305.4342.
[22] Guglielmo Lunardon,et al. Linear k-blocking Sets , 2001, Comb..
[23] Nicola Durante,et al. On the intersection of two subgeometries of PG(n, q) , 2008, Des. Codes Cryptogr..
[24] Monique Limbos. A characterisation of the embeddings of PG(m,q) into PG(n,qr). , 1981 .
[25] Joseph A. Thas,et al. m-Systems of Polar Spaces , 1994, J. Comb. Theory, Ser. A.
[26] Guglielmo Lunardon,et al. Normal Spreads , 1999 .
[27] Michel Lavrauw,et al. Finite semifields and nonsingular tensors , 2013, Des. Codes Cryptogr..
[28] Aart Blokhuis,et al. On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.
[29] Guglielmo Lunardon,et al. Desarguesian spreads , 2011 .
[30] Giuseppe Marino,et al. On Fq-linear sets of PG(3, q3) and semifields , 2007, J. Comb. Theory, Ser. A.
[31] A. Barlotti,et al. Finite Sperner spaces constructed from projective and affine spaces , 1974 .
[32] J. W. Freeman. Reguli and pseudo-reguli in PG(3, s2) , 1980 .
[33] Aart Blokhuis,et al. On the size of a blocking set inPG(2,p) , 1994, Comb..
[34] Michel Lavrauw,et al. Scattered spaces with respect to spreads, and eggs in finite projective spaces : Scattered subspaces with respect to spreads, and eggs in finite projective spaces , 2001 .
[35] Simeon Ball. The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.
[36] Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q) , 2001 .
[37] Michel Lavrauw,et al. On linear sets on a projective line , 2010, Des. Codes Cryptogr..
[38] Polar Geometry. III , 1959 .
[39] Nick Gill. Polar spaces and embeddings of classical groups , 2006, math/0603364.
[40] Olga Polverino,et al. Linear sets in finite projective spaces , 2010, Discret. Math..
[41] Olga Polverino,et al. On Small Blocking Sets , 1998, Comb..
[42] R. Trombetti,et al. Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.
[43] T. Szonyi. Blocking Sets in Desarguesian Affine and Projective Planes , 1997 .
[44] Valentina Pepe,et al. On the algebraic variety vr, t , 2011, Finite Fields Their Appl..
[45] About maximal partial 2-spreads in PG(3m − 1,q) , 2006 .
[46] Martin W. Liebeck,et al. The Subgroup Structure of the Finite Classical Groups , 1990 .
[47] Olga Polverino,et al. Fq-linear blocking sets in PG(2,q4) , 2005 .