Field reduction and linear sets in finite geometry

Based on the simple and well understood concept of subfields in a finite field, the technique called `field reduction' has proved to be a very useful and powerful tool in finite geometry. In this paper we elaborate on this technique. Field reduction for projective and polar spaces is formalized and the links with Desarguesian spreads and linear sets are explained in detail. Recent results and some fundamental ques- tions about linear sets and scattered spaces are studied. The relevance of field reduction is illustrated by discussing applications to blocking sets and semifields.

[1]  R. C. Bose,et al.  The construction of translation planes from projective spaces , 1964 .

[2]  J. Thas,et al.  General Galois geometries , 1992 .

[3]  Geertrui Van de Voorde,et al.  A small minimal blocking set in PG(n, pt), spanning a (t − 1)-space, is linear , 2013, Des. Codes Cryptogr..

[4]  Jacques Tits,et al.  Buildings of Spherical Type and Finite BN-Pairs , 1974 .

[5]  Michel Lavrauw,et al.  Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..

[6]  M. Lavrauw Finite semifields with a large nucleus and higher secant varieties to Segre varieties , 2011 .

[7]  Shane Kelly,et al.  Constructions of intriguing sets of polar spaces from field reduction and derivation , 2007, Des. Codes Cryptogr..

[8]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[9]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[10]  Leo Storme,et al.  On 1-Blocking Sets in PG(n,q), n ≥ 3 , 2000, Des. Codes Cryptogr..

[11]  Geertrui Van de Voorde On the Linearity of Higher-Dimensional Blocking Sets , 2010, Electron. J. Comb..

[12]  Johannes André,et al.  Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .

[13]  T. Szonyi,et al.  Small point sets of PG(n, p3h) intersecting each line in 1 mod ph points , 2010 .

[14]  Péter Sziklai,et al.  On small blocking sets and their linearity , 2008, J. Comb. Theory, Ser. A.

[15]  Tamás Szonyi,et al.  Small Blocking Sets in Higher Dimensions , 2001, J. Comb. Theory, Ser. A.

[16]  Udo Heim,et al.  Proper blocking sets in projective spaces , 1997, Discret. Math..

[17]  M. Lavrauw,et al.  Finite Semifields and Galois Geometry ∗ , 2011 .

[18]  Zsuzsa Weiner Small point sets of PG(n,q) intersecting eachk-space in 1 modulo points , 2005 .

[19]  Olga Polverino Small Blocking Sets in PG(2, p) , 2000, Des. Codes Cryptogr..

[20]  Michel Lavrauw,et al.  A proof of the linearity conjecture for k-blocking sets in PG(n, p3), p prime , 2011, J. Comb. Theory, Ser. A.

[21]  G. Marino,et al.  Solution to An Isotopism Question Concerning Rank 2 Semifields , 2013, 1305.4342.

[22]  Guglielmo Lunardon,et al.  Linear k-blocking Sets , 2001, Comb..

[23]  Nicola Durante,et al.  On the intersection of two subgeometries of PG(n, q) , 2008, Des. Codes Cryptogr..

[24]  Monique Limbos A characterisation of the embeddings of PG(m,q) into PG(n,qr). , 1981 .

[25]  Joseph A. Thas,et al.  m-Systems of Polar Spaces , 1994, J. Comb. Theory, Ser. A.

[26]  Guglielmo Lunardon,et al.  Normal Spreads , 1999 .

[27]  Michel Lavrauw,et al.  Finite semifields and nonsingular tensors , 2013, Des. Codes Cryptogr..

[28]  Aart Blokhuis,et al.  On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.

[29]  Guglielmo Lunardon,et al.  Desarguesian spreads , 2011 .

[30]  Giuseppe Marino,et al.  On Fq-linear sets of PG(3, q3) and semifields , 2007, J. Comb. Theory, Ser. A.

[31]  A. Barlotti,et al.  Finite Sperner spaces constructed from projective and affine spaces , 1974 .

[32]  J. W. Freeman Reguli and pseudo-reguli in PG(3, s2) , 1980 .

[33]  Aart Blokhuis,et al.  On the size of a blocking set inPG(2,p) , 1994, Comb..

[34]  Michel Lavrauw,et al.  Scattered spaces with respect to spreads, and eggs in finite projective spaces : Scattered subspaces with respect to spreads, and eggs in finite projective spaces , 2001 .

[35]  Simeon Ball The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.

[36]  Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q) , 2001 .

[37]  Michel Lavrauw,et al.  On linear sets on a projective line , 2010, Des. Codes Cryptogr..

[38]  Polar Geometry. III , 1959 .

[39]  Nick Gill Polar spaces and embeddings of classical groups , 2006, math/0603364.

[40]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[41]  Olga Polverino,et al.  On Small Blocking Sets , 1998, Comb..

[42]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[43]  T. Szonyi Blocking Sets in Desarguesian Affine and Projective Planes , 1997 .

[44]  Valentina Pepe,et al.  On the algebraic variety vr, t , 2011, Finite Fields Their Appl..

[45]  About maximal partial 2-spreads in PG(3m − 1,q) , 2006 .

[46]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[47]  Olga Polverino,et al.  Fq-linear blocking sets in PG(2,q4) , 2005 .