A SURVEY OF FACTORIZATION COUNTING FUNCTIONS

The general field of additive number theory considers questions concerning representations of a given positive integer n as a sum of other integers. In particular, partitions treat the sums as unordered combinatorial objects, and compositions treat the sums as ordered. Sometimes the sums are restricted, so that, for example, the summands are distinct, or relatively prime, or all congruent to ±1 modulo 5. In this paper we review work on analogous problems concerning representations of n as a product of positive integers. We survey techniques for enumerating product representations both in the unrestricted case and in the case when the factors are required to be distinct, and both when the product representations are considered as ordered objects and when they are unordered. We offer some new identities and observations for these and related counting functions and derive some new recursive algorithms to generate lists of factorizations with restrictions of various types.

[1]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[2]  G. Rieger Über die Anzahl der Produktzerlegungen ganzer Zahlen , 1961 .

[3]  E. Hille,et al.  A problem in "Factorisatio Numerorum" , 1936 .

[4]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[5]  Hsien-Kuei Hwang Distribution of the Number of Factors in Random Ordered Factorizations of Integers , 2000 .

[6]  The distribution of the number of factors in a factorization , 1987 .

[7]  Arnold Knopfmacher Ordered and Unordered Factorizations of Integers , 2006 .

[8]  L. Mattics,et al.  A Bound for the Number of Multiplicative Partitions , 1986 .

[9]  Benny Chor,et al.  On the number of ordered factorizations of natural numbers , 2000, Discret. Math..

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Donald E. Knuth,et al.  A bijection for ordered factorizations , 1990, Journal of Combinatorial Theory.

[12]  R. Evans An asymptotic formula for extended Eulerian numbers , 1974 .

[13]  Leonard Carlitz Extended Bernoulli and Eulerian numbers , 1964 .

[14]  On Kalmar's Problem in “Factorisatio Numerorum.” II , 1941 .

[15]  S. Finch Kalmár’s Composition Constant , 2003 .

[16]  Hsien-Kuei Hwang,et al.  Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques , 1994 .

[17]  J. Shallit,et al.  On the Number of Multiplicative Partitions , 1983 .

[18]  R. Warlimont Factorisatio Numerorum with Constraints , 1993 .

[19]  J. Kim On Highly Factorable Numbers , 1998 .

[20]  A. Oppenheim,et al.  On an Arithmetic Function , 1926 .

[21]  M. V. Subbarao,et al.  On Product Partitions of Integers , 1991, Canadian Mathematical Bulletin.

[22]  Arnold Knopfmacher,et al.  Compositions with distinct parts , 1995 .

[23]  P. A. Macmahon II. Memoir on the theory of the compositions of numbers , 2022, Proceedings of the Royal Society of London.

[24]  C. Long Addition theorems for sets of integers. , 1967 .

[25]  M. Klazar,et al.  On the maximal order of numbers in the , 2005, math/0505352.

[26]  "Factorisatio numerorum" in arithmetical semigroups , 1992 .

[27]  A. Oppenheim On an Arithmetic Function (II) , 1927 .

[28]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[29]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[30]  Arnold Knopfmacher,et al.  Compositions With m Distinct Parts , 1999, Ars Comb..

[31]  P. A. Macmahon The Enumeration of the Partitions of Multipartite Numbers , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Recursive formulae for the multiplicative partition function , 1999 .

[33]  Abe Sklar ON THE FACTORIZATION OF SQUAREFREE INTEGERS , 1952 .

[34]  P. Erdös,et al.  On a problem of Oppenheim concerning “factorisatio numerorum” , 1983 .

[35]  On Some Asymptotic Formulas in The Theory of The "Factorisatio Numerorum" , 1941 .