Beyond AMLS: Domain decomposition with rational filtering

This paper proposes a rational filtering domain decomposition technique for the solution of large and sparse symmetric generalized eigenvalue problems. The proposed technique is purely algebraic and decomposes the eigenvalue problem associated with each subdomain into two disjoint subproblems. The first subproblem is associated with the interface variables and accounts for the interaction among neighboring subdomains. To compute the solution of the original eigenvalue problem at the interface variables we leverage ideas from contour integral eigenvalue solvers. The second subproblem is associated with the interior variables in each subdomain and can be solved in parallel among the different subdomains using real arithmetic only. Compared to rational filtering projection methods applied to the original matrix pencil, the proposed technique integrates only a part of the matrix resolvent while it applies any orthogonalization necessary to vectors whose length is equal to the number of interface variables. In addition, no estimation of the number of eigenvalues lying inside the interval of interest is needed. Numerical experiments performed in distributed memory architectures illustrate the competitiveness of the proposed technique against rational filtering Krylov approaches.

[1]  S. H. Lui,et al.  Domain decomposition methods for eigenvalue problems , 2000 .

[2]  Ping Tak Peter Tang,et al.  Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..

[3]  Zhaojun Bai,et al.  An Algebraic Substructuring Method for Large-Scale Eigenvalue Calculation , 2005, SIAM J. Sci. Comput..

[4]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[5]  Yousef Saad,et al.  On correction equations and domain decomposition for computing invariant subspaces , 2007 .

[6]  Ping Tak Peter Tang,et al.  Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..

[7]  Raymond H. Chan,et al.  A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices , 2017, SIAM J. Matrix Anal. Appl..

[8]  Andreas Stathopoulos,et al.  PRIMME: preconditioned iterative multimethod eigensolver—methods and software description , 2010, TOMS.

[9]  Yousef Saad,et al.  PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[10]  Marc Van Barel,et al.  Designing rational filter functions for solving eigenvalue problems by contour integration , 2015 .

[11]  Chao Yang,et al.  A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems , 2015, SIAM J. Sci. Comput..

[12]  A. Knyazev,et al.  Preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problems , 1994 .

[13]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[14]  Constantine Bekas,et al.  Computation of Smallest Eigenvalues using Spectral Schur Complements , 2005, SIAM J. Sci. Comput..

[15]  Marc Van Barel,et al.  Nonlinear eigenvalue problems and contour integrals , 2016, J. Comput. Appl. Math..

[16]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[17]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[18]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[19]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[20]  T. Rose,et al.  Substructuring in MSC/NASTRAN for large scale parallel applications , 1991 .

[21]  Edoardo Di Napoli,et al.  Non-Linear Least-Squares Optimization of Rational Filters for the Solution of Interior Eigenvalue Problems , 2017, ArXiv.

[22]  Lloyd N. Trefethen,et al.  Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic , 2015, SIAM J. Sci. Comput..

[23]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[24]  Yousef Saad,et al.  Computing Partial Spectra with Least-Squares Rational Filters , 2016, SIAM J. Sci. Comput..

[25]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[26]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[27]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[28]  Y. Saad,et al.  Spectral Schur complement techniques for symmetric Eigenvalue problems , 2016 .

[29]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[30]  Jack Dongarra,et al.  MPI - The Complete Reference: Volume 1, The MPI Core , 1998 .

[31]  Richard B. Lehoucq,et al.  An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics , 2004, SIAM J. Sci. Comput..

[32]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[33]  Yousef Saad,et al.  Domain decomposition approaches for accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems , 2018, Numer. Linear Algebra Appl..

[34]  Zhaojun Bai,et al.  An Implementation and Evaluation of the AMLS Method for Sparse Eigenvalue Problems , 2008, TOMS.

[35]  S. Lui Kron's method for symmetric eigenvalue problems , 1998 .

[36]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[37]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[38]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[39]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .