From 1/f noise to multifractal cascades in heartbeat dynamics.

We explore the degree to which concepts developed in statistical physics can be usefully applied to physiological signals. We illustrate the problems related to physiologic signal analysis with representative examples of human heartbeat dynamics under healthy and pathologic conditions. We first review recent progress based on two analysis methods, power spectrum and detrended fluctuation analysis, used to quantify long-range power-law correlations in noisy heartbeat fluctuations. The finding of power-law correlations indicates presence of scale-invariant, fractal structures in the human heartbeat. These fractal structures are represented by self-affine cascades of beat-to-beat fluctuations revealed by wavelet decomposition at different time scales. We then describe very recent work that quantifies multifractal features in these cascades, and the discovery that the multifractal structure of healthy dynamics is lost with congestive heart failure. The analytic tools we discuss may be used on a wide range of physiologic signals. (c) 2001 American Institute of Physics.

[1]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[2]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[3]  P. F. Panter Modulation, noise, and spectral analysis , 1965 .

[4]  R. G. Medhurst,et al.  Topics in the Theory of Random Noise , 1969 .

[5]  Friedberg Ck Computers in cardiology. , 1970 .

[6]  M. N. Levy Brief Reviews: Sympathetic-Parasympathetic Interactions in the Heart , 1971, Circulation research.

[7]  Allen W. Cowley,et al.  Cardiovascular physiology II , 1977 .

[8]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[9]  G. Varigos,et al.  Sinus Arrhythmia in Acute Myocardial Infarction , 1978, The Medical journal of Australia.

[10]  Richard I. Kitney,et al.  The Study of heart-rate variability , 1980 .

[11]  R. Cohen,et al.  Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. , 1981, Science.

[12]  T. Musha,et al.  1/f Fluctuation of Heartbeat Period , 1982, IEEE Transactions on Biomedical Engineering.

[13]  M F Schlesinger Fractal time and 1/f noise in complex systems. , 1987, Annals of the New York Academy of Sciences.

[14]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[15]  Schwartz,et al.  Random multiplicative processes and transport in structures with correlated spatial disorder. , 1988, Physical review letters.

[16]  H. Stanley,et al.  Multifractal phenomena in physics and chemistry , 1988, Nature.

[17]  Harry Eugene Stanley,et al.  Random fluctuations and pattern growth : experiments and models , 1988 .

[18]  T. Vicsek Fractal Growth Phenomena , 1989 .

[19]  L. Glass,et al.  Chaos in multi-looped negative feedback systems. , 1990, Journal of theoretical biology.

[20]  K M Kessler,et al.  Reproducibility and circadian rhythm of heart rate variability in healthy subjects. , 1990, The American journal of cardiology.

[21]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[22]  P. Bjerregaard,et al.  Circadian variation and influence of risk factors on heart rate variability in healthy subjects. , 1991, The American journal of cardiology.

[23]  Peter Hunter,et al.  Theory of heart , 1991 .

[24]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[25]  Tam VicsektS,et al.  Multi-affine model for the velocity distribution in fully turbulent flows , 1991 .

[26]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[27]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[28]  M. N. Levy,et al.  Sequence of excitation as a factor in sympathetic-parasympathetic interactions in the heart. , 1992, Circulation research.

[29]  C. Peng,et al.  Fractal landscapes and molecular evolution: modeling the myosin heavy chain gene family. , 1993, Biophysical journal.

[30]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  E. L. Fallen,et al.  Predictability of normal heart rhythms and deterministic chaos. , 1993, Chaos.

[32]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[33]  A. Goldberger,et al.  Heart rate dynamics during long-term space flight: report on Mir cosmonauts. , 1994, American heart journal.

[34]  Jørgen K. Kanters,et al.  Lack of Evidence for Low‐Dimensional Chaos in Heart Rate Variability , 1994, Journal of cardiovascular electrophysiology.

[35]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[36]  A L Goldberger,et al.  Correlation approach to identify coding regions in DNA sequences. , 1994, Biophysical journal.

[37]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Fractal Analysis of Channel Mechanisms , 1994 .

[39]  Shlomo Havlin,et al.  Fractals in Science , 1995 .

[40]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[41]  R. Mantegna,et al.  Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[43]  H. Stanley,et al.  Power laws and universality , 1995, Nature.

[44]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[45]  J. Kurths,et al.  Quantitative analysis of heart rate variability. , 1995, Chaos.

[46]  Shlomo Havlin,et al.  Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis , 1996, Nature.

[47]  A. Goldberger Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside , 1996, The Lancet.

[48]  L. Liebovitch,et al.  "Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations". , 1996, Journal of applied physiology.

[49]  G Sugihara,et al.  Nonlinear control of heart rate variability in human infants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Malliani,et al.  Heart rate variability. Standards of measurement, physiological interpretation, and clinical use , 1996 .

[51]  Jeffrey M. Hausdorff,et al.  Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. , 1996, Journal of applied physiology.

[52]  Chi-Sang Poon,et al.  Decrease of cardiac chaos in congestive heart failure , 1997, Nature.

[53]  T. Gregory Dewey Fractals in Molecular Biophysics , 1998 .

[54]  Hanspeter Herzel,et al.  Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex , 1998 .

[55]  H E Stanley,et al.  Scaling and universality in heart rate variability distributions. , 1998, Physica A.

[56]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[57]  Ivanov PCh,et al.  Stochastic feedback and the regulation of biological rhythms. , 1997, Europhysics letters.

[58]  H E Stanley,et al.  Scale-independent measures and pathologic cardiac dynamics. , 1998, Physical review letters.

[59]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[60]  Ivanov PCh,et al.  Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. , 1999, Europhysics letters.

[61]  L. Liebovitch,et al.  Fractal ion-channel behavior generates fractal firing patterns in neuronal models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Wavelets in Physics: Wavelets in medicine and physiology , 1999 .

[63]  Z. Struzik Determining Local Singularity Strengths and their Spectra with the Wavelet Transform , 2000 .

[64]  H E Stanley,et al.  Finding borders between coding and noncoding DNA regions by an entropic segmentation method. , 2000, Physical review letters.

[65]  S. Havlin,et al.  Correlated and uncorrelated regions in heart-rate fluctuations during sleep. , 2000, Physical review letters.

[66]  Zbigniew R. Struzik,et al.  Revealing local variability properties of human heartbeat intervals with the local effective Hölder exponent , 2000 .

[67]  H. Stanley,et al.  Scale invariance in the nonstationarity of human heart rate. , 2000, Physical review letters.

[68]  H. Stanley,et al.  Behavioral-independent features of complex heartbeat dynamics. , 2001, Physical review letters.

[69]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  R. Hughson,et al.  Modeling heart rate variability in healthy humans: a turbulence analogy. , 2001, Physical review letters.

[71]  H. Stanley,et al.  Magnitude and sign correlations in heartbeat fluctuations. , 2000, Physical review letters.

[72]  V. Somers,et al.  Heart Rate Variability: , 2003, Journal of cardiovascular electrophysiology.