O(nρL)-iteration and O(n3L)-operation potential reduction algorithms for linear programming

[1]  Shinji Mizuno,et al.  A new polynomial time method for a linear complementarity problem , 1992, Math. Program..

[2]  Robert M. Freund,et al.  Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function , 1991, Math. Program..

[3]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[4]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[5]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[6]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1987, Math. Program..

[7]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[8]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[9]  C. C. Gonzaga,et al.  An Algorithm for Solving Linear Programming Problems in O(n 3 L) Operations , 1989 .

[10]  C. C. Gonzaga,et al.  An algorithm for solving linear programming programs in O(n3L) operations , 1988 .

[11]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[12]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[13]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.