Hybrid architecture for encoded measurement-based quantum computation

We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication.

[1]  W Dür,et al.  Universal and optimal error thresholds for measurement-based entanglement purification. , 2013, Physical review letters.

[2]  B. Reichardt Improved magic states distillation for quantum universality , 2004, quant-ph/0411036.

[3]  Raymond Laflamme,et al.  Concatenated Quantum Codes , 1996 .

[4]  W Dür,et al.  Multiparticle entanglement purification for graph states. , 2003, Physical review letters.

[5]  Wolfgang Dur,et al.  Entanglement purification protocols for all graph states , 2006 .

[6]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[7]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[8]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[9]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[10]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Philip Walther,et al.  Demonstrating elements of measurement-based quantum error correction , 2014 .

[12]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[13]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[14]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[15]  R. Raussendorf Key ideas in quantum error correction , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[17]  K. Birgitta Whaley,et al.  Lower bounds on the nonzero capacity of Pauli channels , 2008 .

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[20]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[21]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[22]  E. Knill,et al.  Entanglement purification of any stabilizer state , 2006 .

[23]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[24]  W. Dur,et al.  Measurement-based quantum repeaters , 2012, 1204.2178.

[25]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[26]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[27]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  W. Dur,et al.  Multiparticle entanglement purification for two-colorable graph states (20 pages) , 2005 .

[29]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[30]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[31]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[32]  Wolfgang Dur,et al.  Effective noise channels for encoded quantum systems , 2013, 1306.1738.

[33]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[34]  W. Dur,et al.  Entanglement properties of multipartite entangled states under the influence of decoherence , 2005 .

[35]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[36]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[37]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[38]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[39]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[40]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[41]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[42]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[43]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[44]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.