Maneuver recognition using probabilistic finite-state machines and fuzzy logic
暂无分享,去创建一个
Thao Dang | Gabi Breuel | Andreas Tamke | Till Hülnhagen | Ingo Dengler | T. Dang | G. Breuel | A. Tamke | T. Hülnhagen | Ingo Dengler | Gabi Breuel | Andreas Tamke
[1] Arati Gerdes. Automatic Maneuver Recognition in the Automobile: the Fusion of Uncertain Sensor Values using Bayesian Models , 2006 .
[2] Francisco Casacuberta,et al. Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] Wolfram Burgard,et al. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .
[4] Jean-Marc Nigro,et al. IDRES: A rule-based system for driving situation recognition with uncertainty management , 2003, Inf. Fusion.
[5] K. Naab,et al. Probabilistic approach for modeling and identifying driving situations , 2008, 2008 IEEE Intelligent Vehicles Symposium.
[6] Michael Brost,et al. Action Recognition and Prediction for Driver Assistance Systems Using Dynamic Belief Networks , 2002, Agent Technologies, Infrastructures, Tools, and Applications for E-Services.
[7] A. Hermann,et al. Driving situation analysis in automotive environment , 2008, 2008 IEEE International Conference on Vehicular Electronics and Safety.
[8] Mark J. F. Gales,et al. The Application of Hidden Markov Models in Speech Recognition , 2007, Found. Trends Signal Process..
[9] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[10] Hans-Hellmut Nagel,et al. ’Innervation des Automobils’ und Formale Logik , 2005 .