The 26 Wilf-equivalence classes of length five quasi-consecutive patterns
暂无分享,去创建一个
[1] Toufik Mansour,et al. Some results on the avoidance of vincular patterns by multisets , 2015, Discret. Appl. Math..
[2] Anders Claesson,et al. Generalized Pattern Avoidance , 2001, Eur. J. Comb..
[3] Marc Noy,et al. Clusters, generating functions and asymptotics for consecutive patterns in permutations , 2012, Adv. Appl. Math..
[4] Andrew M. Baxter. Shape-Wilf-equivalences for vincular patterns , 2012, Adv. Appl. Math..
[5] Anisse Kasraoui,et al. New Wilf-equivalence results for vincular patterns , 2013, Eur. J. Comb..
[6] Sergey Kitaev. Partially ordered generalized patterns , 2005, Discret. Math..
[7] Toufik Mansour,et al. New equivalences for pattern avoidance for involutions , 2007 .
[8] Mark Shattuck,et al. Some Wilf-equivalences for vincular patterns , 2015 .
[9] B. Nakamura. Computational Approaches to Consecutive Pattern Avoidance in Permutations , 2011, 1102.2480.
[10] Julian West,et al. A New Class of Wilf-Equivalent Permutations , 2001 .
[11] Marc Noy,et al. Consecutive patterns in permutations , 2003, Adv. Appl. Math..
[12] Sergi Elizalde,et al. Asymptotic enumeration of permutations avoiding generalized patterns , 2005, Adv. Appl. Math..
[13] Eric Babson,et al. Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .