An LMI approach for reduced-order ℋ2 LTI controller synthesis

This paper presents a procedure to design reduced-order ℋ2 dynamic output feedback controllers for discrete-time linear time-invariant systems. Starting from a stabilizing full-order controller, novel sufficient linear matrix inequality conditions for the existence of reduced-order ℋ2 controllers are derived. The proposed approach can either be applied directly to compute a controller of desired order from the full-order result, or iteratively by reducing the controller order successively. Numerical experiments confirm the potential of the proposed controller design approach.

[1]  F. Leibfritz COMPleib: COnstrained Matrix–optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems , 2006 .

[2]  Z. Luo,et al.  Computational complexity of a problem arising in fixed order output feedback design , 1997 .

[3]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[6]  C. Scherer,et al.  Linear Matrix Inequalities in Control , 2011 .

[7]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[8]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[9]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[10]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[13]  Ricardo C. L. F. Oliveira,et al.  LMI Relaxations for Reduced-Order Robust ${\cal H}_{\infty}$ Control of Continuous-Time Uncertain Linear Systems , 2012, IEEE Transactions on Automatic Control.

[14]  Jan Swevers,et al.  Gain‐scheduled dynamic output feedback control for discrete‐time LPV systems , 2012 .

[15]  C. M. Agulhari,et al.  Robust ℋ∞ static output-feedback design for time-invariant discrete-time polytopic systems from parameter-dependent state-feedback gains , 2010, Proceedings of the 2010 American Control Conference.

[16]  Ricardo C. L. F. Oliveira,et al.  Static output feedback control of polytopic systems using polynomial Lyapunov functions , 2010, 49th IEEE Conference on Decision and Control (CDC).

[17]  Wim Michiels,et al.  Combining Convex–Concave Decompositions and Linearization Approaches for Solving BMIs, With Application to Static Output Feedback , 2011, IEEE Transactions on Automatic Control.

[18]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[19]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[20]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[22]  Alexandre Trofino,et al.  Sufficient LMI conditions for the design of static and reduced order controllers , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[23]  A. Stoorvogel The robust H2 control problem: a worst-case design , 1993, IEEE Trans. Autom. Control..

[24]  D. Henrion,et al.  Overcoming non-convexity in polynomial robust control design , 2004 .