Diffusion approximation and first passage time problem for a model neuron

A diffusion equation for the transition p.d.f. describing the time evolution of the membrane potential for a model neuron, subjected to a Poisson input, is obtained, without breaking up the continuity of the underlying random function. The transition p.d.f. is calculated in a closed form and the average firing interval is determined by using the steady-state limiting expression of the transition p.d.f. The Laplace transform of the first passage time p.d.f. is then obtained in terms of Parabolic Cylinder Functions as solution of a Weber equation, satisfying suitable boundary conditions. A continuous input model is finally investigated.

[1]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[2]  S. Rice Mathematical analysis of random noise , 1944 .

[3]  A. Siegert On the First Passage Time Probability Problem , 1951 .

[4]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .

[5]  E. Kugelberg,et al.  Motor unit activity in the human extraocular muscles , 1953 .

[6]  D. Darling,et al.  THE FIRST PASSAGE PROBLEM FOR A CONTINUOUS MARKOFF PROCESS , 1953 .

[7]  S. Hagiwara,et al.  Analysis of interval fluctuation of the sensory nerve impulse. , 1954, The Japanese journal of physiology.

[8]  F. Tricomi Funzioni ipergeometriche confluenti , 1954 .

[9]  G. Westheimer Mechanism of saccadic eye movements. , 1954, A.M.A. archives of ophthalmology.

[10]  G. Schulz A. Blane-Lapierre, R. Fortet, Théorie des fonctions aléatoires. XVI + 694 S. m. zahlr. Abb. Paris 1953. Masson et Cie., éd. Preis brosch. 6000 frs., geb. 6500 frs , 1955 .

[11]  T. Cornsweet Determination of the stimuli for involuntary drifts and saccadic eye movements. , 1956, Journal of the Optical Society of America.

[12]  D. W. Tufts,et al.  Statistical Communication Theory , 1958 .

[13]  R. Fortet,et al.  Theorie des fonctions aleatoires , 1958 .

[14]  R. W. Ditchburn,et al.  Vision with controlled movements of the retinal image , 1959, The Journal of physiology.

[15]  D. Middleton An Introduction to Statistical Communication Theory , 1960 .

[16]  B. Mandelbrot,et al.  RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON. , 1964, Biophysical journal.

[17]  R. Stein A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. , 1965, Biophysical journal.

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  John H. Milsum,et al.  Biological Control Systems Analysis , 1966 .

[20]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[21]  P. Johannesma,et al.  Diffusion Models for the Stochastic Activity of Neurons , 1968 .

[22]  D. R. Smith,et al.  Analysis of the exponential decay model of the neuron showing frequency threshold effects. , 1969, The Bulletin of mathematical biophysics.

[23]  J. G. Thomas The dynamics of small saccadic eye movements , 1969, The Journal of physiology.