The Application of Machine Learning Techniques in Clinical Drug Therapy.

INTRODUCTION The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers. METHODS According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions. RESULTS AND CONCLUSION In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development.

[1]  J. Chen,et al.  Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures , 2013, Proteomics.

[2]  Christine W. Duarte,et al.  High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans , 2011, Bioinform..

[3]  Mathukumalli Vidyasagar,et al.  Identifying predictive features in drug response using machine learning: opportunities and challenges. , 2015, Annual review of pharmacology and toxicology.

[4]  Jimmy Xiangji Huang,et al.  DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions , 2016, BMC Medical Genomics.

[5]  B Testa,et al.  In silico pharmacology for drug discovery: applications to targets and beyond , 2007, British journal of pharmacology.

[6]  P.A.C.R. Costa,et al.  A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data , 2010, BMC Genomics.

[7]  Syed Sibte Raza Abidi,et al.  A Predictive Model for Personalized Therapeutic Interventions in Non-small Cell Lung Cancer , 2016, IEEE Journal of Biomedical and Health Informatics.

[8]  T. Reiss Drug discovery of the future: the implications of the human genome project. , 2001, Trends in biotechnology.

[9]  Pedro J Ballester,et al.  Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data , 2016, bioRxiv.

[10]  Igor Kononenko,et al.  Machine learning for medical diagnosis: history, state of the art and perspective , 2001, Artif. Intell. Medicine.

[11]  Zhenyu Ding,et al.  Predicting Cancer Drug Response by Proteomic Profiling , 2006, Clinical Cancer Research.

[12]  Kalpana Raja,et al.  Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases , 2017, Scientific Reports.

[13]  Hua Xu,et al.  Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs , 2012, J. Am. Medical Informatics Assoc..

[14]  Gustavo Henrique Goulart Trossini,et al.  Use of machine learning approaches for novel drug discovery , 2016, Expert opinion on drug discovery.

[15]  Chun Xing Li,et al.  Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection , 2015, BMC Cancer.

[16]  Myung G. Lee,et al.  Dose-independent pharmacokinetics of clindamycin after intravenous and oral administration to rats: contribution of gastric first-pass effect to low bioavailability. , 2007, International journal of pharmaceutics.

[17]  Jiuyong Li,et al.  DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. , 2016, Drug discovery today.

[18]  J. Ross,et al.  Regulatory Review of New Therapeutic Agents - FDA versus EMA, 2011-2015. , 2017, The New England journal of medicine.

[19]  C Helma,et al.  Prediction of Adverse Drug Reactions Using Decision Tree Modeling , 2010, Clinical pharmacology and therapeutics.

[20]  D. Weaver,et al.  Drug Design and Discovery: Translational Biomedical Science Varies Among Countries , 2013, Clinical and translational science.

[21]  C. Staatz,et al.  Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part II , 2010, Clinical pharmacokinetics.

[22]  Salma Jamal,et al.  Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models , 2017, Scientific Reports.

[23]  Daniel L. Rubin,et al.  Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data , 2016, J. Biomed. Informatics.

[24]  M. Kinch,et al.  2016 in review: FDA approvals of new molecular entities. , 2017, Drug discovery today.

[25]  H Moon,et al.  Predictive models of cytotoxicity as mediated by exposure to chemicals or drugs , 2016, SAR and QSAR in environmental research.

[26]  Xia Li,et al.  Research and applications: Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy , 2013, J. Am. Medical Informatics Assoc..

[27]  N. Larkins,et al.  Tacrolimus therapeutic drug monitoring and pediatric renal transplant graft outcomes , 2014, Pediatric transplantation.

[28]  J. Chen,et al.  Predicting adverse side effects of drugs , 2011, BMC Genomics.

[29]  J. L. Fernández-Martínez,et al.  On the prediction of Hodgkin lymphoma treatment response , 2015, Clinical and Translational Oncology.

[30]  Vinod Sharma,et al.  Predicting Methylphenidate Response in ADHD Using Machine Learning Approaches , 2015, The international journal of neuropsychopharmacology.

[31]  Robert G. Wither,et al.  Prediction of antiepileptic drug treatment outcomes using machine learning , 2017, Journal of neural engineering.

[32]  V. Haufroid,et al.  Opportunities to Optimize Tacrolimus Therapy in Solid Organ Transplantation: Report of the European Consensus Conference , 2009, Therapeutic drug monitoring.

[33]  Richard J. Epstein,et al.  Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: a machine learning approach , 2016, BMC Cancer.

[34]  Mehmet Tan Prediction of anti-cancer drug response by kernelized multi-task learning , 2016, Artif. Intell. Medicine.

[35]  Justin Guinney,et al.  Systematic Assessment of Analytical Methods for Drug Sensitivity Prediction from Cancer Cell Line Data , 2013, Pacific Symposium on Biocomputing.

[36]  Chuen Seng Tan,et al.  Proteomic data analysis workflow for discovery of candidate biomarker peaks predictive of clinical outcome for patients with acute myeloid leukemia. , 2008, Journal of proteome research.

[37]  Julio Saez-Rodriguez,et al.  Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties , 2012, PloS one.

[38]  Antonio Lavecchia,et al.  Machine-learning approaches in drug discovery: methods and applications. , 2015, Drug discovery today.

[39]  Ney Lemke,et al.  Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review , 2015, Front. Physiol..

[40]  Chi-Ying F. Huang,et al.  Using computational strategies to predict potential drugs for nasopharyngeal carcinoma , 2013, Head & neck.