Real-Time Pedestrian Detection Using Support Vector Machines

In this paper, we present a real-time pedestrian detection method in outdoor environments. It is necessary for pedestrian detection to implement obstacle and face detection which are major parts of a walking guidance system for the visually impaired. It detects foreground objects on the ground, discriminates pedestrians from other noninterest objects, and extracts candidate regions for face detection and recognition. For effective real-time pedestrian detection, we have developed a method using stereo-based segmentation and the SVM (Support Vector Machines), which works well particularly in binary classification problem (e.g. object detection). We used vertical edge features extracted from arms, legs and torso. In our experiments, test results on a large number of outdoor scenes demonstrated the effectiveness of the proposed pedestrian detection method.

[1]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..