Common brain disorders are associated with heritable patterns of apparent aging of the brain

Anders M. Dale | Lars T. Westlye | Mona K. Beyer | Hanne F. Harbo | Magda Tsolaki | Terry L. Jernigan | Oleksandr Frei | Dag Alnæs | Peter Kirsch | Simon Cervenka | Lars Farde | Erlend S. Dørum | Tobias Kaufmann | Ole A. Andreassen | Geneviève Richard | Knut K. Kolskår | Jan Egil Nordvik | Vidar M. Steen | Deanna M. Barch | Bruno Vellas | Lars Nyberg | Paul Pauli | Eric Westman | Astri J. Lundervold | Torbjørn Elvsåshagen | Linn B. Norbom | Ulrik F. Malt | Torgeir Moberget | Beathe Haatveit | Erik G. Jönsson | Alessandro Bertolino | Mathias Zink | Andreas Meyer-Lindenberg | Anne-Marthe Sanders | Asta K. Håberg | Ingrid Agartz | Nhat Trung Doan | Hilkka Soininen | Giulio Pergola | Andreas Papassotiropoulos | Francesco Bettella | Thomas Espeseth | Patrizia Mecocci | Emanuel Schwarz | Lei Wang | Simon Lovestone | Karin Persson | Jan Buitelaar | Barbara Franke | Klaus-Peter Lesch | Catharina A. Hartman | Dennis van der Meer | Srdjan Djurovic | Ingrid Melle | Geir Selbæk | Jaroslav Rokicki | Nils Inge Landrø | Rune Jonassen | Jaap Oosterlaan | Alexey A. Shadrin | Olav B. Smeland | Arvid Lundervold | S. Djurovic | I. Melle | B. Franke | O. Andreassen | A. Dale | A. Meyer-Lindenberg | K. Lesch | D. Barch | F. Bettella | D. D. de Quervain | L. Nyberg | A. Lundervold | T. Kaufmann | A. Lundervold | L. Westlye | T. Jernigan | I. Agartz | J. Buitelaar | H. Soininen | U. Malt | E. Westman | P. Mecocci | B. Vellas | M. Tsolaki | I. Kloszewska | S. Lovestone | P. Pauli | P. Kirsch | T. Espeseth | J. Nordvik | N. Landrø | H. Harbo | P. Sowa | E. Celius | G. Pergola | A. Bertolino | E. Jönsson | L. Farde | S. Borgwardt | G. Selbæk | T. Moberget | S. Le Hellard | V. Steen | C. Hartman | A. Papassotiropoulos | F. Piehl | J. Buitelaar | A. Håberg | S. Eisenacher | M. Zink | D. Heslenfeld | P. Hoekstra | E. Bøen | T. Elvsåshagen | J. Oosterlaan | Geneviève Richard | Kristine M. Ulrichsen | D. Alnæs | E. Dørum | Anne-Marthe Sanders | N. T. Doan | C. L. Brandt | R. Baur-Streubel | A. Conzelmann | G. Ziegler | D. van der Meer | S. Cervenka | B. Haatveit | M. Beyer | E. Schwarz | H. Fatouros-Bergman | L. Flyckt | P. Di Carlo | M. Papalino | A. Shadrin | O. Frei | O. Smeland | Karin Persson | Lei Wang | L. Norbom | J. Rokicki | E. Høgestøl | S. Erhardt | L. Schwieler | G. Engberg | A. Cordova-Palomera | L. Maglanoc | M. J. Lund | R. Jonassen | K. Collste | P. Victorsson | A. Malmqvist | M. Hedberg | F. Orhan | Funda Orhan | Sophie Erhardt | Dirk Heslenfeld | Stephanie Le Hellard | Pieter J. Hoekstra | Christine L. Brandt | Annette Conzelmann | Elisabeth G. Celius | Fredrik Piehl | Erlend Bøen | Stefan Borgwardt | Iwona Kłoszewska | Pasquale Di Carlo | Marco Papalino | Karin Persson | Helena Fatouros-Bergman | Lena Flyckt | Karin Collste | L. B. Norbom | Göran Engberg | Ramona Baur-Streubel | Piotr Sowa | Aldo Córdova-Palomera | Martina J. Lund | Dominique J. F. de Quervain | Sarah Eisenacher | Einar A. Høgestøl | Lars Lena Göran Sophie Helena Simon Lilly Fredrik Ingri Farde Flyckt Engberg Erhardt Fatouros-Bergma | Lilly Schwieler | Pauliina Victorsson | Anna Malmqvist | Mikael Hedberg | Luigi A. Maglanoc | Georg C. Ziegler | L. A. Maglanoc | K. Ulrichsen | K. Kolskår | G. Richard | A. Córdova-Palomera | G. C. Ziegler | Lars Lena Göran Sophie Helena Simon Lilly Fredrik Ingri Farde Flyckt Engberg Erhardt Fatouros-Bergma | A. Meyer-Lindenberg | Beathe Haatveit | A. Lundervold | R. Baur‐Streubel

[1]  John P. Rice,et al.  Identification of common genetic risk variants for autism spectrum disorder , 2019, Nature Genetics.

[2]  I. Melle,et al.  Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models , 2018, JAMA psychiatry.

[3]  Alicia R. Martin,et al.  Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder , 2018, Nature Genetics.

[4]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[5]  V. Bansal,et al.  Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia , 2018, Nature Communications.

[6]  Wesley K. Thompson,et al.  A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE , 2018, bioRxiv.

[7]  M. Dylan Tisdall,et al.  Quantitative assessment of structural image quality , 2018, NeuroImage.

[8]  Warren W. Kretzschmar,et al.  Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression , 2017, Nature Genetics.

[9]  Thomas E. Nichols,et al.  Statistical Challenges in “Big Data” Human Neuroimaging , 2018, Neuron.

[10]  Stuart J. Ritchie,et al.  Brain age predicts mortality , 2017, Molecular Psychiatry.

[11]  J. Cole,et al.  Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers , 2017, Trends in Neurosciences.

[12]  Jakob Grove,et al.  Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder , 2017, bioRxiv.

[13]  H. Ullum,et al.  The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility , 2017, bioRxiv.

[14]  Mark E Bastin,et al.  Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants , 2017, bioRxiv.

[15]  Giovanni Montana,et al.  Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker , 2016, NeuroImage.

[16]  Oscar Marín,et al.  Developmental timing and critical windows for the treatment of psychiatric disorders , 2016, Nature Medicine.

[17]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[18]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[19]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[20]  Pamela F Cipriano,et al.  No health without mental health. , 2016, The American nurse.

[21]  Christine Ecker,et al.  Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan , 2015, The Lancet Neurology.

[22]  Daniel H. Geschwind,et al.  Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders , 2015, Nature Reviews Genetics.

[23]  T. Insel,et al.  Brain disorders? Precisely , 2015, Science.

[24]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[25]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[26]  Y Wang,et al.  Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci , 2014, Molecular Psychiatry.

[27]  T. Lumley,et al.  gplots: Various R Programming Tools for Plotting Data , 2015 .

[28]  Reisa A. Sperling,et al.  Alzheimer's disease , 2015, Nature Reviews Disease Primers.

[29]  Jan K. Buitelaar,et al.  Attention-deficit/hyperactivity disorder , 2015, Nature Reviews Disease Primers.

[30]  Vladimir S Fonov,et al.  Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth , 2014, Neurology.

[31]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[33]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[34]  M. McCarthy,et al.  Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. , 2013, American journal of human genetics.

[35]  S. Karterud,et al.  The symptom and function dimensions of the Global Assessment of Functioning (GAF) scale. , 2012, Comprehensive psychiatry.

[36]  Gary King,et al.  MatchIt: Nonparametric Preprocessing for Parametric Causal Inference , 2011 .

[37]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[38]  G. Salmon,et al.  Attention deficit hyperactivity disorder. , 2018, British journal of hospital medicine.

[39]  Jonathan D. Power,et al.  Prediction of Individual Brain Maturity Using fMRI , 2010, Science.

[40]  Wolfgang Viechtbauer,et al.  Conducting Meta-Analyses in R with the metafor Package , 2010 .

[41]  Stefan Klöppel,et al.  Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters , 2010, NeuroImage.

[42]  E. Bullmore,et al.  Anatomy of bipolar disorder and schizophrenia: A meta-analysis , 2010, Schizophrenia Research.

[43]  T. Insel Rethinking schizophrenia , 2010, Nature.

[44]  I. Cuthill,et al.  Effect size, confidence interval and statistical significance: a practical guide for biologists , 2007, Biological reviews of the Cambridge Philosophical Society.

[45]  Vikram Patel,et al.  No health without mental health , 2007, The Lancet.

[46]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[47]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[48]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[49]  Terry L. Jernigan,et al.  Cerebral structure on MRI, part II: Specific changes in Alzheimer's and Huntington's diseases , 1991, Biological Psychiatry.

[50]  S. Kay,et al.  The positive and negative syndrome scale (PANSS) for schizophrenia. , 1987, Schizophrenia bulletin.

[51]  J. Kurtzke Rating neurologic impairment in multiple sclerosis , 1983, Neurology.

[52]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.