Positive solutions for Robin problem involving the p(x)-Laplacian☆

Abstract Consider Robin problem involving the p ( x ) -Laplacian on a smooth bounded domain Ω as follows { − Δ p ( x ) u = λ f ( x , u ) in Ω , | ∇ u | p ( x ) − 2 ∂ u ∂ η + β | u | p ( x ) − 2 u = 0 on ∂ Ω . Applying the sub-supersolution method and the variational method, under appropriate assumptions on f, we prove that there exists λ * > 0 such that the problem has at least two positive solutions if λ ∈ ( 0 , λ * ) , has at least one positive solution if λ = λ * + ∞ and has no positive solution if λ > λ * . To prove the results, we prove a norm on W 1 , p ( x ) ( Ω ) without the part of | ⋅ | L p ( x ) ( Ω ) which is equivalent to usual one and establish a special strong comparison principle for Robin problem.

[1]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[2]  Vicentiu D. Rădulescu,et al.  Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent , 2008 .

[3]  Dun Zhao,et al.  A class of De Giorgi type and Hölder continuity , 1999 .

[4]  Xianling Fan,et al.  On the sub-supersolution method for p(x)-Laplacian equations , 2007 .

[5]  T. Runst,et al.  On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems , 2005 .

[6]  Xianling Fan,et al.  Remarks on Ricceri’s variational principle and applications to the p(x)-Laplacian equations , 2007 .

[7]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[8]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[9]  B. Sciunzi,et al.  Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations , 2006 .

[10]  Gary M. Lieberman,et al.  Mixed boundary value problems for elliptic and parabolic differential equations of second order , 1986 .

[11]  J. Manfredi,et al.  SOBOLEV VERSUS HÖLDER LOCAL MINIMIZERS AND GLOBAL MULTIPLICITY FOR SOME QUASILINEAR ELLIPTIC EQUATIONS , 2000 .

[12]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[13]  L. Véron,et al.  Quasilinear elliptic equations involving critical Sobolev exponents , 1989 .

[14]  Shao-Gao Deng,et al.  A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations , 2009, Appl. Math. Comput..

[15]  Haim Brezis,et al.  Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems , 1994 .

[16]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[17]  Shao-Gao Deng,et al.  Eigenvalues of the p(x)-Laplacian Steklov problem☆ , 2008 .

[18]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[19]  Yongqiang Fu,et al.  Existence of solutions for p(x)-Laplacian problems on a bounded domain , 2005 .

[20]  Patrizia Pucci,et al.  The strong maximum principle revisited , 2004 .

[21]  Lucio Damascelli,et al.  Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations , 2004 .

[22]  Ó. JoãoMarcosdo,et al.  Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems , 2005 .

[23]  Yinbin Deng,et al.  Existence of multiple positive solutions for inhomogeneous Neumann problem , 2002 .

[24]  Xianling Fan,et al.  Global C1,α regularity for variable exponent elliptic equations in divergence form , 2007 .

[25]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[26]  H. Brezis,et al.  H1 versus C1 local minimizers , 1993 .

[27]  H. Amann Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces , 1976 .

[28]  Vicentiu D. Rădulescu,et al.  Existence and Non-Existence Results for Quasilinear Elliptic Exterior Problems with Nonlinear Boundary Conditions , 2007, 0706.2403.

[29]  Zongming Guo,et al.  W1,p versus C1 local minimizers and multiplicity results for quasilinear elliptic equations , 2003 .

[30]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[31]  Mihai Mihailescu,et al.  On a nonhomogeneous quasilinear eigenvalue problem in sobolev spaces with variable exponent , 2006, math/0606156.