Conformal organohalide perovskites enable lasing on spherical resonators.

Conformal integration of semiconductor gain media is broadly important in on-chip optical communication technology. Here we deploy atomic layer deposition to create conformally deposited organohalide perovskites--an attractive semiconducting gain medium--with the goal of achieving coherent light emission on spherical optical cavities. We demonstrate the high quality of perovskite gain media fabricated with this method, achieving optical gain in the nanosecond pulse regime with a threshold for amplified spontaneous emission of 65 ± 8 μJ cm(-2). Through variable stripe length measurements, we report a net modal gain of 125 ± 22 cm(-1) and a gain bandwidth of 50 ± 14 meV. Leveraging the high quality of the gain medium, we conformally coat silica microspheres with perovskite to form whispering gallery mode optical cavities and achieve lasing.

[1]  L. D. Negro,et al.  Applicability conditions and experimental analysis of the variable stripe length method for gain measurements , 2004 .

[2]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[3]  A. Malko,et al.  High‐Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications , 2003 .

[4]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[5]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[6]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[7]  E. Sargent,et al.  A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength. , 2006, Optics express.

[8]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[9]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[10]  Tze Chien Sum,et al.  Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. , 2014, Nano letters.

[11]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[12]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[13]  Arto Nurmikko,et al.  Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. , 2012, Nature nanotechnology.

[14]  R. F. Leheny,et al.  Direct Determination of Optical Gain in Semiconductor Crystals , 1971 .

[15]  H. Mabuchi,et al.  High-Q measurements of fused-silica microspheres in the near infrared. , 1998, Optics letters.

[16]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[17]  Kerry J. Vahala,et al.  Erbium-implanted silica microsphere laser , 2006 .

[18]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[19]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[20]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[21]  Lorenzo Pavesi,et al.  Optical gain in silicon nanocrystals , 2001 .

[22]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[23]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[24]  Philippe Guyot-Sionnest,et al.  Electrical Transport in Colloidal Quantum Dot Films. , 2012, The journal of physical chemistry letters.

[25]  Almantas Galvanauskas,et al.  Ultrafast lasers : technology and applications , 2002 .

[26]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[27]  Moungi G. Bawendi,et al.  From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids , 2002 .

[28]  K. Müllen,et al.  Amplified Spontaneous Emission of Poly(ladder‐type phenylene)s – The Influence of Photophysical Properties on ASE Thresholds , 2008 .

[29]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.