Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques

In this work, we consider two kinds of model reduction techniques to simulate blood flow through the largest systemic arteries, where a stenosis is located in a peripheral artery i.e. in an artery that is located far away from the heart. For our simulations we place the stenosis in one of the tibial arteries belonging to the right lower leg (right post tibial artery). The model reduction techniques that are used are on the one hand side dimensionally reduced models (1-D and 0-D models, the so-called mixed-dimension model) and on the other hand side surrogate models produced by kernel methods. Both methods are combined in such a way that the mixed-dimension models yield training data for the surrogate model, where the surrogate model is parametrised by the degree of narrowing of the peripheral stenosis. By means of a well-trained surrogate model, we show that simulation data can be reproduced with a satisfactory accuracy and that parameter optimisation problems can be solved in a very efficient way. Furthermore it is demonstrated that a surrogate model enables us to present after a very short simulation time the impact of a varying degree of stenosis on blood flow.

[1]  Thomas J. R. Hughes,et al.  On the one-dimensional theory of blood flow in the larger vessels , 1973 .

[2]  Alfio Quarteroni,et al.  A 3D/1D geometrical multiscale model of cerebral vasculature , 2009 .

[3]  C. Dangelo,et al.  Multiscale modelling of metabolism and transport phenomena in living tissues , 2007 .

[4]  Alison L. Marsden,et al.  Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support , 2015 .

[5]  A Noordergraaf,et al.  Analog studies of the human systemic arterial tree. , 1969, Journal of biomechanics.

[6]  W. P. Timlake,et al.  A theory of fluid flow in compliant tubes. , 1966, Biophysical journal.

[7]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[8]  Bernard Haasdonk,et al.  Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation , 2016, 1612.02672.

[9]  Gianluigi Rozza,et al.  Modeling of physiological flows , 2012 .

[10]  Anna Scotti,et al.  A mixed finite element method for modeling the fluid exchange between microcirculation and tissue interstitium , 2018 .

[11]  S. Sherwin,et al.  Reduced modelling of blood flow in the cerebral circulation: Coupling 1‐D, 0‐D and cerebral auto‐regulation models , 2008 .

[12]  Peng Zhao,et al.  Blood Flow in the Circle of Willis: Modeling and Calibration , 2008, Multiscale Model. Simul..

[13]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[14]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[15]  Mahmoud Ismail,et al.  Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models , 2013, J. Comput. Phys..

[16]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[17]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[18]  Denis J. Doorly,et al.  What happens to pressure when a flow enters a side branch? , 2003, Journal of Fluid Mechanics.

[19]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[20]  Rainer Helmig,et al.  Reduced one‐dimensional modelling and numerical simulation for mass transport in fluids , 2013 .

[21]  Xiao Hu,et al.  A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics. , 2015, Journal of biomechanical engineering.

[22]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[23]  D. F. Young,et al.  Computer simulation of arterial flow with applications to arterial and aortic stenoses. , 1992, Journal of biomechanics.

[24]  P. Nithiarasu,et al.  A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method , 2008 .

[25]  Piecewise Polynomial , 2014, Computer Vision, A Reference Guide.

[26]  Andrew J. Pullan,et al.  An Anatomically Based Model of Transient Coronary Blood Flow in the Heart , 2002, SIAM J. Appl. Math..

[27]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..

[28]  S. Sherwin,et al.  Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. , 2007, Journal of biomechanics.

[29]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[30]  Holger Wendland,et al.  Adaptive greedy techniques for approximate solution of large RBF systems , 2000, Numerical Algorithms.

[31]  H. Holden,et al.  Riemann problems with a kink , 1999 .

[32]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[33]  J. Mynard,et al.  One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation , 2015, Annals of Biomedical Engineering.

[34]  Mette S Olufsen,et al.  Structured tree outflow condition for blood flow in larger systemic arteries. , 1999, American journal of physiology. Heart and circulatory physiology.

[35]  A. Quarteroni,et al.  Fluid―structure interaction simulation of aortic blood flow , 2011 .

[36]  D. F. Young,et al.  Effect of geometry on pressure losses across models of arterial stenoses. , 1976, Journal of biomechanics.

[37]  S. Čanić,et al.  Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi‐symmetric vessels , 2003 .

[38]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[39]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[40]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[41]  Alfio Quarteroni,et al.  A One Dimensional Model for Blood Flow: Application to Vascular Prosthesis , 2002 .

[42]  A. Pries,et al.  Blood viscosity in tube flow: dependence on diameter and hematocrit. , 1992, The American journal of physiology.

[43]  S. Chiaramida,et al.  A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. , 1997, The American journal of physiology.

[44]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[45]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[46]  A. Quarteroni,et al.  OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES , 2003 .

[47]  L. Formaggia,et al.  Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart , 2006, Computer methods in biomechanics and biomedical engineering.

[48]  A. Quarteroni,et al.  One-dimensional models for blood flow in arteries , 2003 .

[49]  Bernard Haasdonk,et al.  A Vectorial Kernel Orthogonal Greedy Algorithm , 2013 .

[50]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[51]  Bernard Haasdonk,et al.  Surrogate modeling of multiscale models using kernel methods , 2015 .

[52]  Spencer J. Sherwin,et al.  Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system , 2003 .

[53]  Gregory E. Fasshauer,et al.  Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.

[54]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[55]  Hans Burkhardt,et al.  Invariant kernel functions for pattern analysis and machine learning , 2007, Machine Learning.

[56]  Alfio Quarteroni,et al.  Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics , 2014, J. Comput. Appl. Math..

[57]  D. F. Young,et al.  Flow characteristics in models of arterial stenoses. II. Unsteady flow. , 1973, Journal of biomechanics.

[58]  Bernard Haasdonk,et al.  Transformation knowledge in pattern analysis with kernel methods: distance and integration kernels , 2006 .

[59]  B Wohlmuth,et al.  The influence of an unilateral carotid artery stenosis on brain oxygenation. , 2014, Medical engineering & physics.

[60]  Barbara I. Wohlmuth,et al.  Numerical modeling of compensation mechanisms for peripheral arterial stenoses , 2016, Comput. Biol. Medicine.

[61]  Hao Liu,et al.  A Closed-Loop Lumped Parameter Computational Model for Human Cardiovascular System , 2005 .

[62]  Emilie Marchandise,et al.  A numerical hemodynamic tool for predictive vascular surgery. , 2009, Medical engineering & physics.

[63]  Armin Helisch,et al.  Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. , 2002, Journal of molecular and cellular cardiology.

[64]  M. Olufsen,et al.  On deriving lumped models for blood flow and pressure in the systemic arteries. , 2004, Mathematical biosciences and engineering : MBE.

[65]  Ryutaro Himeno,et al.  Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses , 2009, Medical & Biological Engineering & Computing.

[66]  Joaquim Peiró,et al.  Physical determining factors of the arterial pulse waveform: theoretical analysis and calculation using the 1-D formulation , 2012, Journal of Engineering Mathematics.

[67]  K. Parker,et al.  Wave propagation in a model of the arterial circulation. , 2004, Journal of biomechanics.

[68]  M. Urner Scattered Data Approximation , 2016 .

[69]  Bernard Haasdonk,et al.  Chapter 2: Reduced Basis Methods for Parametrized PDEs—A Tutorial Introduction for Stationary and Instationary Problems , 2017 .

[70]  R. Van Loon,et al.  An implicit solver for 1D arterial network models , 2017, International journal for numerical methods in biomedical engineering.

[71]  Mette S. Olufsen,et al.  Analysis of Viscoelastic Wall Properties in Ovine Arteries , 2009, IEEE Transactions on Biomedical Engineering.

[72]  Bernard Haasdonk,et al.  Greedy Kernel Approximation for Sparse Surrogate Modeling , 2018 .

[73]  S. Louis,et al.  The Washington manual of surgery , 2013 .

[74]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[75]  S. Sherwin,et al.  Lumped parameter outflow models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation , 2008 .