Hashing into Hessian Curves

We describe a hashing function from the elements of the finite field Fq into points on a Hessian curve. Our function features the uniform and smaller size for the cardinalities of almost all fibers compared with the other known hashing functions for elliptic curves. For ordinary Hessian curves, this function is 2 : 1 for almost all points. More precisely, for odd q, the cardinality of the image set of the function is exactly given by (q + i + 2)/2 for some i = -1, 1. Next, we present an injective hashing function from the elements of Zm into points on a Hessian curve over Fq with odd q and m = (q+i)/2 for some i = -1, 1, 3.

[1]  Marc Joye,et al.  Hessian Elliptic Curves and Side-Channel Attacks , 2001, CHES.

[2]  Ed Dawson,et al.  New Formulae for Efficient Elliptic Curve Arithmetic , 2007, INDOCRYPT.

[3]  Rudolf Lide,et al.  Finite fields , 1983 .

[4]  Igor E. Shparlinski,et al.  On hashing into elliptic curves , 2009, J. Math. Cryptol..

[5]  Nigel P. Smart,et al.  The Hessian Form of an Elliptic Curve , 2001, CHES.

[6]  Thomas Icart,et al.  How to Hash into Elliptic Curves , 2009, IACR Cryptol. ePrint Arch..

[7]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[8]  Jean-Gabriel Kammerer,et al.  The geometry of flex tangents to a cubic curve and its parameterizations , 2011, J. Symb. Comput..

[9]  Christiaan E. van de Woestijne,et al.  Construction of Rational Points on Elliptic Curves over Finite Fields , 2006, ANTS.

[10]  M. Ulas Rational points on certain hyperelliptic curves over finite fields , 2007, 0706.1448.

[11]  D. Chudnovsky,et al.  Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .

[12]  Guénaël Renault,et al.  Encoding Points on Hyperelliptic Curves over Finite Fields in Deterministic Polynomial Time , 2010, Pairing.

[13]  Mehdi Tibouchi,et al.  Deterministic Encoding and Hashing to Odd Hyperelliptic Curves , 2010, Pairing.

[14]  Igor E. Shparlinski,et al.  Indifferentiable deterministic hashing to elliptic and hyperelliptic curves , 2012, Math. Comput..

[15]  Mehdi Tibouchi,et al.  Estimating the Size of the Image of Deterministic Hash Functions to Elliptic Curves , 2010, LATINCRYPT.

[16]  Ben Lynn,et al.  Toward Hierarchical Identity-Based Encryption , 2002, EUROCRYPT.

[17]  Sarvar Patel,et al.  Provably Secure Password-Authenticated Key Exchange Using Diffie-Hellman , 2000, EUROCRYPT.

[18]  Marc Joye,et al.  Efficient Arithmetic on Hessian Curves , 2010, Public Key Cryptography.

[19]  Jean-Sébastien Coron,et al.  Efficient Indifferentiable Hashing into Ordinary Elliptic Curves , 2010, CRYPTO.

[20]  Uzi Vishne,et al.  Factorization of Trinomials over Galois Fields of Characteristic 2 , 1997 .

[21]  R. G. Swan,et al.  Factorization of polynomials over finite fields. , 1962 .

[22]  David P. Jablon Strong password-only authenticated key exchange , 1996, CCRV.

[23]  O. Hesse Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. , 1844 .

[24]  Ed Dawson,et al.  Faster Group Operations on Elliptic Curves , 2009, AISC.

[25]  K. Dalen On a theorem of Stickelberger , 1955 .