Fe-doped SnO2 nanomaterial : A low temperature hydrogen sulfide gas sensor

Abstract The effect of Fe-doping on the surface chemistry and gas-sensing properties of nanocrystalline tin oxide is analyzed. The pristine and Fe-doped SnO2 are synthesized by the modified Pechini citrate route that produces around 40 and 18 nm sized nanoparticles, respectively. 1 at.% Fe-doped SnO2 shows significantly high selectivity towards hydrogen sulfide gas with capability to detect even 10 ppm of hydrogen sulfide at room temperature, with change of about one order of magnitude in the resistance within 5–15 s. In comparison, pristine SnO2 shows negligible response towards H2S at room temperature. The ideal response and recovery of Fe-doped SnO2 at low concentration of gas suggests Fe-doped SnO2 nanomaterial as a potential low cost, low temperature H2S gas sensor.

[1]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[2]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[3]  Bozhi Tian,et al.  Nanostructured metal oxides synthesized by hard template method for gas sensing applications , 2005 .

[4]  F. Kruis,et al.  Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films: A method to develop parts per billion level gas sensors , 2006 .

[5]  P. Siciliano,et al.  Nanocrystalline Metal Oxides from the Injection of Metal Oxide Sols in Coordinating Solutions: Synthesis, Characterization, Thermal Stabilization, Device Processing, and Gas‐Sensing Properties , 2006 .

[6]  Matteo Ferroni,et al.  Synthesis and characterization of semiconducting nanowires for gas sensing , 2007 .

[7]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[8]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[9]  Koji Ito,et al.  H2S sensing property of porous SnO2 sputtered films coated with various doping films , 2006 .

[10]  M. Rumyantseva,et al.  Nanocomposites SnO2/Fe2O3: Wet chemical synthesis and nanostructure characterization , 2005 .

[11]  V. C. Sahni,et al.  Highly sensitive hydrogen sulphide sensors operable at room temperature , 2006 .

[12]  V. S. Sapkal,et al.  Structural and gas sensing properties of nanocrystalline TiO2:WO3-based hydrogen sensors , 2006 .

[13]  J. Ying,et al.  SnO2−In2O3 Nanocomposites as Semiconductor Gas Sensors for CO and NOx Detection , 2007 .

[14]  Marina N. Rumyantseva,et al.  CuO/SnO2 thin film heterostructures as chemical sensors to H2S , 1998 .

[15]  K. Patil,et al.  High H2S-sensitive copper-doped tin oxide thin film , 2003 .

[16]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[17]  Somnath C. Roy,et al.  Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films , 2007 .

[18]  Hong-Ming Lin,et al.  Nanocrystalline WO3-based H2S sensors , 1994 .

[19]  S. Manorama,et al.  High sensitivity and selectivity of an SnO2 sensor to H2S at around 100 °C , 1995 .

[20]  Young Kyu Hwang,et al.  Nanostructured tin oxide: Synthesis and gas-sensing properties , 2005 .

[21]  A. M. Gas'kov,et al.  Dopants in nanocrystalline tin dioxide , 2003 .

[22]  L. F. Reyes,et al.  Gas sensing with films of nanocrystalline WO3 and Pd made by advanced reactive gas deposition , 2005 .

[23]  H. Fang,et al.  Au nanoparticles enhance CO oxidation onto SnO2 nanobelt , 2007 .