Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification

[1]  H. Assadi,et al.  Anomalous kinetics, patterns formation in recalescence, and final microstructure of rapidly solidified Al-rich Al-Ni alloys , 2022, Acta Materialia.

[2]  M. A. Zaeem,et al.  Interactive Effects of Interfacial Energy Anisotropy and Solute Transport on Solidification Patterns of Al-Cu Alloys , 2022, Acta Materialia.

[3]  M. Asle Zaeem,et al.  A Temperature-Dependent Atomistic-Informed Phase-Field Model to Study Dendritic Growth , 2021, Journal of Crystal Growth.

[4]  P. Galenko,et al.  The hodograph equation for slow and fast anisotropic interface propagation , 2021, Philosophical Transactions of the Royal Society A.

[5]  L. Zhigilei,et al.  Kinetics of solid–liquid interface motion in molecular dynamics and phase-field models: crystallization of chromium and silicon , 2021, Philosophical Transactions of the Royal Society A.

[6]  Qiang Yang,et al.  Crystal growth in deeply undercooled Ni50Al50: Signature of the ordering sequence at the interface. , 2021, The Journal of chemical physics.

[7]  D. Moldovan,et al.  Quantitative prediction of rapid solidification by integrated atomistic and phase-field modeling , 2021 .

[8]  V. Ankudinov,et al.  Traveling waves of the solidification and melting of cubic crystal lattices. , 2020, Physical review. E.

[9]  D. Moldovan,et al.  Interface kinetics of rapid solidification of binary alloys by atomistic simulations: Application to Ti-Ni alloys , 2020 .

[10]  Hui Chen,et al.  Effects of laser scanning speeds on different states of the molten pool during selective laser melting: Simulation and experiment , 2020 .

[11]  V. Ankudinov,et al.  Bell-shaped “dendrite velocity-undercooling” relationship with an abrupt drop of solidification kinetics in glass forming Cu-Zr(-Ni) melts , 2020 .

[12]  P. Galenko,et al.  Fast traveling waves in the phase-field theory: effective mobility approach versus kinetic energy approach , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  M. Baskes,et al.  Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification , 2019, Modelling and Simulation in Materials Science and Engineering.

[14]  D. Jou,et al.  Rapid solidification as non-ergodic phenomenon , 2019, Physics Reports.

[15]  D. Moldovan,et al.  Combined molecular dynamics and phase field simulation investigations of crystal-melt interfacial properties and dendritic solidification of highly undercooled titanium , 2019, Computational Materials Science.

[16]  M. Rettenmayr,et al.  Diffusionless (chemically partitionless) crystallization and subsequent decomposition of supersaturated solid solutions in Sn–Bi eutectic alloy , 2019, Philosophical Transactions of the Royal Society A.

[17]  V. Ankudinov,et al.  Thermodynamics of rapid solidification and crystal growth kinetics in glass-forming alloys , 2019, Philosophical Transactions of the Royal Society A.

[18]  V. Ankudinov,et al.  Local non-equilibrium effect on the growth kinetics of crystals , 2019, Acta Materialia.

[19]  M. Vasin Description of glass transition kinetics in 3D XY model in terms of gauge field theory , 2018, Physica A: Statistical Mechanics and its Applications.

[20]  Marco Berghoff,et al.  Crystal-melt interface mobility in bcc Fe: Linking molecular dynamics to phase-field and phase-field crystal modeling , 2018 .

[21]  S. Zechel,et al.  Determining solid/liquid interfacial energies in Al-Cu by curvature controlled melting point depression , 2018 .

[22]  D. Moldovan,et al.  Phase Field Modeling of Solidification in Single Component Systems , 2017 .

[23]  Supriyo Ghosh,et al.  Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: recent developments, future directions , 2017, 1707.09292.

[24]  P. K. Galenko,et al.  Analysis of interface kinetics: solutions of the Gibbs-Thomson-type equation and of the kinetic rate theory , 2017 .

[25]  Alexander H. King,et al.  Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals , 2016 .

[26]  D. Alexandrov,et al.  The hyperbolic Allen–Cahn equation: exact solutions , 2016 .

[27]  Tingting Xu,et al.  Phase selection and re-melting-induced anomalous eutectics in undercooled Ni–38 wt% Si alloys , 2016, Journal of Materials Science.

[28]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[29]  Yusheng Shi,et al.  Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review , 2015 .

[30]  M. Baskes,et al.  Two-Phase Solid-Liquid Coexistence of Ni, Cu, and Al by Molecular Dynamics Simulations using the Modified Embedded-Atom Method , 2015 .

[31]  Mohsen Asle Zaeem,et al.  Quantitative Modeling of the Equilibration of Two-Phase Solid-Liquid Fe by Atomistic Simulations on Diffusive Time Scales , 2015 .

[32]  Marco Berghoff,et al.  Phase-Field Simulations at the Atomic Scale in Comparison to Molecular Dynamics , 2013, TheScientificWorldJournal.

[33]  Peter Harrowell,et al.  Anomalously slow crystal growth of the glass-forming alloy CuZr. , 2013, Nature materials.

[34]  Sergio D. Felicelli,et al.  Modeling dendritic solidification of Al–3%Cu using cellular automaton and phase-field methods , 2013 .

[35]  M. Horstemeyer,et al.  Investigating thermal effects on morphological evolution during crystallisation of hcp metals: three-dimensional phase field study , 2012 .

[36]  H. Fu,et al.  Dendrite morphology and evolution mechanism of nickel-based single crystal superalloys grown along the and orientations , 2012 .

[37]  S. Felicelli,et al.  Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals , 2012 .

[38]  D. Herlach,et al.  Solute trapping in rapid solidification of a binary dilute system: a phase-field study. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  B. Laird,et al.  Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts. , 2011, Physical review letters.

[40]  J. Hoyt,et al.  Molecular dynamics simulations of the crystal–melt interface mobility in HCP Mg and BCC Fe , 2010 .

[41]  J. Hoyt,et al.  Molecular-dynamics study of solid–liquid interface migration in fcc metals , 2010 .

[42]  I. Steinbach Phase-field models in materials science , 2009 .

[43]  D. Cahill,et al.  Solidification velocities in deeply undercooled silver. , 2009, Physical review letters.

[44]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[45]  K. Binder,et al.  Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50 , 2008, 0802.2529.

[46]  R. Averback,et al.  Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings , 2007 .

[47]  D. Jou,et al.  Diffuse-interface model for rapid phase transformations in nonequilibrium systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  A. Karma,et al.  Quantitative phase-field model of alloy solidification. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Alain Karma,et al.  Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations , 2002 .

[50]  Mark Asta,et al.  Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag , 2002 .

[51]  H. Jones,et al.  The solid–liquid interfacial energy of metals: calculations versus measurements , 2002 .

[52]  S. Denisenko,et al.  The effect of the melt-spinning processing parameters on the rate of cooling , 2002 .

[53]  J. Debierre,et al.  Measuring kinetic coefficients by molecular dynamics simulation of zone melting. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  A. Karma,et al.  Linking Phase-Field and Atomistic Simulations to Model Dendritic Solidification in Highly Undercooled Melts , 2001, cond-mat/0112163.

[55]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[56]  Babak Sadigh,et al.  Kinetic phase field parameters for the Cu–Ni system derived from atomistic computations , 1999 .

[57]  James A. Warren,et al.  The phase-field method: simulation of alloy dendritic solidification during recalescence , 1996 .

[58]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[59]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[60]  Gunduz Caginalp,et al.  Phase Field Models and Sharp Interface Limits: Some Differences in Subtle Situations , 1991 .

[61]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[62]  J. Q. Broughton,et al.  Crystallization of fcc (111) and (100) crystal‐melt interfaces: A comparison by molecular dynamics for the Lennard‐Jones system , 1988 .

[63]  J. Q. Broughton,et al.  Crystallization Rates of a Lennard-Jones Liquid , 1982 .

[64]  S. Vosko,et al.  A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties , 1976 .

[65]  Samuel M. Allen,et al.  Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys , 1976 .

[66]  Samuel M. Allen,et al.  Coherent and incoherent equilibria in iron-rich iron-aluminum alloys , 1975 .

[67]  D. Turnbull ON THE RELATION BETWEEN CRYSTALLIZATION RATE AND LIQUID STRUCTURE , 1962 .

[68]  F. Macdougall Kinetic Theory of Liquids. By J. Frenkel. , 1947 .

[69]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[70]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[71]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[72]  Harold W. Wilson B.A. D.Sc.,et al.  XX. On the velocity of solidification and viscosity of super-cooled liquids , 1900 .

[73]  A. Paraschiv,et al.  Edge and corner effects in selective laser melting of IN 625 alloy , 2020, Manufacturing Review.

[74]  E. Cuéllar,et al.  Effect of the linear velocity during the melt spinning process on shape memory transformation of Ni-Ti ribbons , 2012 .

[75]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[76]  J. Monk,et al.  Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations , 2009 .

[77]  Mark Asta,et al.  Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations . , 2004 .

[78]  Ryo Kobayashi,et al.  A Numerical Approach to Three-Dimensional Dendritic Solidification , 1994, Exp. Math..

[79]  V. M. Tikhomirov,et al.  A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem , 1991 .