Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

Effects of core polarization and tensor coupling on the magnetic moments in C-13(Lambda), O-17(Lambda), and Ca-41(Lambda) Lambda-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by A tensor coupling. The A tensor potential reduces the spin-orbit splitting of p(Lambda) states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p(Lambda) states from the Schmidt values are found to increase with nuclear mass number.

[1]  J. Yao,et al.  Time-odd triaxial relativistic mean field approach for nuclear magnetic moments , 2006, nucl-th/0606040.

[2]  W. Long,et al.  Density-dependent relativistic Hartree-Fock approach , 2005, nucl-th/0512086.

[3]  H. Toki,et al.  Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei , 2005, nucl-th/0508020.

[4]  Peter Ring,et al.  Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure , 2005 .

[5]  Song Sun,et al.  Effects of diatoms on reproduction and growth of marine copepods , 2004 .

[6]  W. Long,et al.  New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling , 2003, nucl-th/0311031.

[7]  J. Meng,et al.  Neutron halos in hypernuclei , 2003 .

[8]  M. May,et al.  Observation of spin-orbit splitting in lambda single-particle states. , 2001, Physical review letters.

[9]  P. Ring,et al.  Relativistic mean-field description of light Λ hypernuclei with large neutron excess , 1998 .

[10]  T. Suzuki,et al.  Exchange Currents for Hypernuclear Magnetic Moments , 1997, nucl-th/9705029.

[11]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[12]  Jennings,et al.  Relativistic description of Lambda, Sigma, and Xi hypernuclei. , 1994, Physical review. C, Nuclear physics.

[13]  Y. Tanaka THE CONFIGURATION MIXING EFFECTS ON MAGNETIC MOMENTS OF MEDIUM-WEIGHT AND HEAVY Λ-HYPERNUCLEI , 1993 .

[14]  Weber,et al.  Relativistic sigma - omega mean-field theory for hyperons from a quark model. , 1991, Physical review. C, Nuclear physics.

[15]  Izquierdo,et al.  Lambda -hypernuclei magnetic moments in a relativistic model. , 1991, Physical review. C, Nuclear physics.

[16]  H. Bandō,et al.  PRODUCTION, STRUCTURE AND DECAY OF HYPERNUCLEI , 1990 .

[17]  J. Mares,et al.  Hypernuclear magnetic moments , 1990 .

[18]  B. Jennings The Dirac equation and Λ-nucleus systematics , 1990 .

[19]  A. Gal,et al.  On the production and spectroscopy of Σ hypernuclei , 1989 .

[20]  Yosuke Tanaka The schmidt diagrams and the configuration mixing effects on hypernuclear magnetic moments , 1989 .

[21]  Yosuke Tanaka Magnetic Moments of Light Hypernuclei with the pmnkY Configuration ( Y =Λ, Σ and Ξ) , 1989 .

[22]  P. Reinhard REVIEW ARTICLE: The relativistic mean-field description of nuclei and nuclear dynamics , 1989 .

[23]  R. Chrien,et al.  NUCLEAR SYSTEMS WITH STRANGENESS , 1989 .

[24]  U. Hofmann,et al.  A new method to calculate magnetic moments in relativistic mean field theories , 1988 .

[25]  H. Stöcker,et al.  Single-particle spectra of Λ hypernuclei and the enhanced interaction radii of multi-strange objects , 1987 .

[26]  R. Furnstahl,et al.  Nuclear currents in a relativistic mean-field theory , 1987 .

[27]  Cohen,et al.  Hypernuclear currents in a relativistic mean-field theory. , 1987, Physical review. C, Nuclear physics.

[28]  Oka,et al.  Resolution of the magnetic moment problem in relativistic theories. , 1986, Physical review. C, Nuclear physics.

[29]  K. Ikeda,et al.  Chapter III. Production, Structure an Decay of Light p-Shell Λ-Hypernuclei , 1985 .

[30]  J. Walecka,et al.  The Relativistic Nuclear Many Body Problem , 1984 .

[31]  C. Horowitz,et al.  Self-consistent hartree description of finite nuclei in a relativistic quantum field theory , 1981 .

[32]  J. Boguta,et al.  RELATIVISTIC QUANTUM FIELD THEORY OF A HYPERNUCLEI , 1981 .

[33]  J. V. Noble Nuclear Dirac phenomenology and the Λ-nucleus potential☆ , 1980 .

[34]  Sidney D. Drell,et al.  Relativistic Quantum Mechanics , 1965 .

[35]  J. Pniewski,et al.  Delayed disintegration of a heavy nuclear fragment: I , 1953 .