Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines

Accuracy, reliability, and long lifetimes are critical parameters for sensors measuring temperature in gas turbines of clean coal-fired power plants. Greener high efficiency next generation power plants need gas turbines operating at extremely high temperatures of 1500°C, where present thermocouple temperature probe technology fails to operate with reliable and accurate readings over long lifetimes. To solve this pressing problem, we have proposed the concept of a new hybrid class of all-silicon carbide (SiC) optical sensor, where a single crystal SiC optical chip is embedded in a sintered SiC tube assembly, forming a coefficient of thermal expansion (CTE) matched all-SiC front-end probe. Because chip and host material are CTE matched, optimal handling of extreme thermal ramps and temperatures is possible. In this article, we demonstrate the first successful industrial combustor rig test of this hybrid all-SiC temperature sensor front-end probe indicating demonstrated probe structural robustness to 1600°C and rig test data to ~1200°C. The design of the rig test sensor system is presented and data are analyzed.

[1]  G. Beheim,et al.  Fibre-optic thermometer using semiconductor-etalon sensor , 1986 .

[2]  S Pacala,et al.  Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies , 2004, Science.

[3]  S. C. Som,et al.  Multiplex fourier transform holography , 1970 .

[4]  Mumtaz Sheikh,et al.  Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe. , 2009, Optics letters.

[5]  Atul K. Jain,et al.  Energy implications of future stabilization of atmospheric CO2 content , 1998, Nature.

[6]  N.A. Riza,et al.  Silicon Carbide-Based Remote Wireless Optical Pressure Sensor , 2007, IEEE Photonics Technology Letters.

[7]  K. N. Seetharamu,et al.  Fundamentals of the Finite Element Method for Heat and Fluid Flow , 2004 .

[8]  David G Hawkins,et al.  What to do about coal. , 2006, Scientific American.

[9]  Byoungho Lee,et al.  Review of the present status of optical fiber sensors , 2003 .

[10]  Gustave C. Fralick,et al.  Use of a multiwavelength pyrometer in several elevated temperature aerospace applications , 2001 .

[11]  Nabeel A. Riza,et al.  Experimental studies of an all-silicon carbide hybrid wireless-wired optics temperature sensor for extreme environments in turbines , 2008, Photonics Europe.

[12]  D. Dewitt,et al.  Theory and practice of radiation thermometry , 1988 .

[13]  Ronald O'Rourke Navy Ship Propulsion Technologies: Options for Reducing Oil Use - Background for Congress , 2006 .

[14]  Jun Wang,et al.  Absolute sapphire optical fiber sensor for high-temperature applications , 1998, Other Conferences.

[15]  Bing Qi,et al.  Single-crystal sapphire-based optical high-temperature sensor for harsh environments , 2004 .

[16]  Peter J. Bonzani,et al.  Improvement to a bench top instrument for measuring spectral emittance at high temperatures , 2003 .

[17]  Andrew J. Steckl,et al.  SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor , 2003 .

[18]  N. Riza,et al.  Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism. , 2003, Applied optics.

[19]  K. Stump,et al.  High temperature, stable fiber Bragg gratings , 2002, 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533).

[20]  Nabeel A. Riza,et al.  Wireless pressure sensor using laser targeting of silicon carbide , 2007 .

[21]  N.A. Riza,et al.  Harsh environments minimally invasive optical sensor using free-space targeted single-crystal silicon carbide , 2006, IEEE Sensors Journal.

[22]  Anbo Wang,et al.  Absolute sapphire optical fiber sensor for high temperature applications , 1997, Proceedings IEEE SOUTHEASTCON '97. 'Engineering the New Century'.

[23]  Andrew McIlroy,et al.  Research needs for future internal combustion engines , 2008 .

[24]  Mumtaz Sheikh,et al.  Silicon-carbide-based extreme environment temperature sensor using wavelength-tuned signal processing. , 2008, Optics letters.

[25]  Nabeel A. Riza,et al.  All-silicon carbide hybrid wireless-wired optics temperature sensor: turbine tests and distributed fiber sensor network design , 2009, Optics + Optoelectronics.