Probabilistic model-based diagnostics

This thesis presents the concept of general argumentation systems, a framework for representing uncertain knowledge using information algebras and information systems as well as probability algebras. Argumentation systems are a generalization of assumption-based systems and propositional argumentation systems and can deal with very general formalisms. We show also that an argumentation system itself is a special case of an information system. We focus on argumentation systems as a tool for doing model-based diagnostics of complex systems built of components. Given a system and observations, this knowledge is modeled in the framework of an argumentation system. If the observations are not as predicted from the specification of the system, we have a diagnostic problem. Then, using concepts which are built on top of the argumentation system (such as generalized hints and allocations of support), conflicts and diagnoses, arguments, etc. for the system can be computed. Diagnoses of a system which does not work as it is supposed to, can then be used to define repair or replacement strategies for the components of the system. The set of diagnoses is often too big to be computed explicitly, but we define a logical framework for the description of sets of diagnoses. A main ingredient of an argumentation system is probabilistic knowledge of some parts of the available information, essentially knowledge about the modes of the components. This probabilistic knowledge allows to define allocations of probability and allocations of belief on top of the argumentation systems. Using these allocations, the symbolical results are weighed and discrimination between them is possible. Further, we present algorithms for efficient computation of the probability of logical representations of sets of arguments without explicitly computing the sets. The local computation framework of Shenoy & Shafer can be applied to argumentation systems. We show also how additional information can be added to an argumentation system, i.e. how argumentation systems are combined. Combination of argumentation systems can also be replaced by combination of the generalized hints, the allocations of arguments or belief defined on top of them. Further, we address the problem of how additional information about the system can be obtained, especially where further measurements should take place in order to obtain a maximal expected gain of information in the argumentation system; this is useful for a sequential process of discrimination of diagnoses in the system. Finally, we present the language ABEL, an implementation of a special type of argumentation system. Several examples are presented in order to show the strength of argumentation systems.

[1]  Jean-Louis Imbert Fourier's Elimination: Which to Choose? , 1993, PPCP.

[2]  Scott M. Olmsted On representing and solving decision problems , 1983 .

[3]  Paul-André Monney,et al.  Computing the Probability of Formulas Representing Events in Product Spaces , 2000 .

[4]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[5]  Raymond Reiter,et al.  Foundations of Assumption-based Truth Maintenance Systems: Preliminary Report , 1987, AAAI.

[6]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[7]  H. Paul Williams,et al.  Fourier-Motzkin Elimination Extension to Integer Programming Problems , 1976, J. Comb. Theory, Ser. A.

[8]  Frank Beichelt Zuverlässigkeits- und Instandhaltungstheorie , 1993 .

[9]  Jürg Kohlas,et al.  Allocation of Arguments and Evidence Theory , 1997, Theor. Comput. Sci..

[10]  Serafín Moral,et al.  Heuristic Algorithms for the Triangulation of Graphs , 1994, IPMU.

[11]  Thomas M. Strat,et al.  Decision analysis using belief functions , 1990, Int. J. Approx. Reason..

[12]  Rolf Haenni,et al.  Reasoning with Finite Set Constraints , 1998 .

[13]  Gregory M. Provan,et al.  A logic-based analysis of Dempster-Shafer theory , 1990, Int. J. Approx. Reason..

[14]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[15]  Jürg Kohlas,et al.  Fast-Division Architecture for Dempster-Shafer Belief Functions , 1997, ECSQARU-FAPR.

[16]  G. Grätzer General Lattice Theory , 1978 .

[17]  Paul-André Monney,et al.  Using propositional logic to compute probabilities in multistate systems , 1999, Int. J. Approx. Reason..

[18]  Jürg Kohlas,et al.  Argumentation Systems and Evidence Theory , 1994, IPMU.

[19]  Jürg Kohlas,et al.  Assumption-Based Modeling Using ABEL , 1997, ECSQARU-FAPR.

[20]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[21]  Alexander Aiken,et al.  The Complexity of Set Constraints , 1993, CSL.

[22]  Howard Raiffa,et al.  Decision analysis: introductory lectures on choices under uncertainty. 1968. , 1969, M.D.Computing.

[23]  Jürg Kohlas,et al.  Probabilistic Assumption-Based Reasoning , 1993, UAI.

[24]  J. Abraham An Improved Algorithm for Network Reliability , 1979, IEEE Transactions on Reliability.

[25]  Rolf Haenni Assumption-Based Reasoning with Algebraic Clauses , 1997 .

[26]  R. Haenni A valuation-based architecture for assumption-based reasoning , 1995 .

[27]  Katsumi Inoue,et al.  Linear Resolution for Consequence Finding , 1992, Artif. Intell..

[28]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[29]  Hong Xu,et al.  Computing Marginals for Arbitrary Subsets from Marginal Representation in Markov Trees , 1995, Artif. Intell..

[30]  Johan de Kleer,et al.  Extending the ATMS , 1986, Artif. Intell..

[31]  Rolf Haenni,et al.  Assumption-Based Reasoning with Finite Set Constraints , 1998 .

[32]  James A. Reggia,et al.  A formal model of diagnostic inference. I. Problem formulation and decomposition , 1985, Inf. Sci..

[33]  Johan de Kleer,et al.  A Perspective on Assumption-Based Truth Maintenance , 1993, Artif. Intell..

[34]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[35]  P. Monney,et al.  A generalization of the algorithm of Heidtmann to non-monotone formulas , 1996 .

[36]  Ross D. Shachter Probabilistic Inference and Influence Diagrams , 1988, Oper. Res..

[37]  Rolf Haenni,et al.  An Alternative to Outward Propagation for Dempster-Shafer Belief Functions , 1999, ESCQARU.

[38]  Rolf Haenni,et al.  Generating Diagnoses from Conflict Sets , 1998, FLAIRS.

[39]  Philippe Besnard,et al.  Evidence Theory Based on General Consequence Relations , 1995, Int. J. Found. Comput. Sci..

[40]  Rolf Haenni,et al.  Computing probabilities of events in Bayesian networks , 2002 .

[41]  Jürg Kohlas,et al.  Propositional Information Systems , 1999, J. Log. Comput..

[42]  Silviu Guiaşu,et al.  Information theory with applications , 1977 .

[43]  Jürg Kohlas Symbolic Evidence, Arguments, Supports and Valuation Networks , 1993, ECSQARU.

[44]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[45]  Prakash P. Shenoy,et al.  Computation in Valuation Algebras , 2000 .

[46]  Prakash P. Shenoy,et al.  Valuation-based systems: a framework for managing uncertainty in expert systems , 1992 .

[47]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[48]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[49]  P. Halmos Lectures on Boolean Algebras , 1963 .

[50]  Bernhard Beckert,et al.  Transformations between signed and classical clause logic , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[51]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[52]  Prakash P. Shenoy,et al.  Binary Join Trees , 1996, UAI.

[53]  Johan de Kleer,et al.  Using Crude Probability Estimates to Guide Diagnosis , 1990, Artif. Intell..

[54]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[55]  Jürg Kohlas SUPPORT- AND PLAUSIBILITY FUNCTIONS INDUCED BY FILTER-VALUED MAPPINGS , 1993 .

[56]  Sophie Tison,et al.  Solving Systems of Set Constraints using Tree Automata , 1993, STACS.

[57]  Katsumi Inoue,et al.  An Abductive Procedure for the CMS/ATMS , 1990, Truth Maintenance Systems.

[58]  Reiner Hähnle,et al.  Advanced Many-Valued Logics , 2001 .

[59]  Reiner Hähnle,et al.  Deduction in many-valued logics: a survey , 1997 .

[60]  Jürg Kohlas,et al.  Model-Based Diagnostics and Probabilistic Assumption-Based Reasoning , 1998, Artif. Intell..

[61]  J. Kohlas,et al.  Information Algebras and Information Systems , 1996 .

[62]  Teow-Hin Ngair Convex spaces as an order theoretic basis for problem-solving , 1992 .

[63]  Ronald A. Howard,et al.  Development of Automated Aids for Decision Analysis , 1976 .

[64]  Aimin Hou,et al.  A Theory of Measurement in Diagnosis from First Principles , 1994, Artif. Intell..

[65]  Didier Dubois,et al.  An introduction to possibilistic and fuzzy logics , 1990 .

[66]  Alessandro Saffiotti,et al.  Pulcinella: A General Tool for Propagating Uncertainty in Valuation Networks , 1991, UAI.

[67]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[68]  Jürg Kohlas,et al.  A Mathematical Theory of Hints , 1995 .

[69]  Dexter Kozen Logical Aspects of Set Constraints , 1993, CSL.

[70]  Jürg Kohlas,et al.  Zuverlässigkeit und Verfügbarkeit , 1987 .

[71]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[72]  Jürg Kohlas,et al.  Model-Based Diagnostics Using Hints , 1995, ECSQARU.

[73]  Kathryn B. Laskey,et al.  Assumptions, Beliefs and Probabilities , 1989, Artif. Intell..

[74]  Luca Console,et al.  Readings in Model-Based Diagnosis , 1992 .

[75]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[76]  Klaus D. Heidtmann,et al.  Smaller sums of disjoint products by subproduct inversion , 1989 .

[77]  Jürg Kohlas Mathematical Foundations of Evidence Theory , 1995 .

[78]  Jürg Kohlas,et al.  Theory of evidence — A survey of its mathematical foundations, applications and computational aspects , 1994, Math. Methods Oper. Res..

[79]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[80]  Anthony Hunter Uncertainty in Information Systems: An Introduction to Techniques and Applications , 1996 .

[81]  Michael R. Genesereth,et al.  The Use of Design Descriptions in Automated Diagnosis , 1984, Artif. Intell..

[82]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[83]  Hong Xu Network-Based Decision Algorithms , 2000 .

[84]  Prakash P. Shenoy,et al.  A valuation-based language for expert systems , 1989, Int. J. Approx. Reason..

[85]  Prakash P. Shenoy,et al.  COMPUTING MARGINALS USING LOCAL COMPUTATION , 1996 .

[86]  Prakash P. Shenoy,et al.  Valuation-Based Systems for Bayesian Decision Analysis , 1992, Oper. Res..

[87]  Johan De Kleer,et al.  Local Methods for Localizing Faults in Electronic Circuits , 1976 .

[88]  Prakash P. Shenoy,et al.  A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions , 1998, UAI.

[89]  Guy L. Steele,et al.  Common Lisp the Language , 1984 .

[90]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .