Exponential filtering for uncertain Markovian jump time-delay systems with nonlinear disturbances

In this paper, we study the robust exponential filter design problem for a class of uncertain time-delay systems with both Markovian jumping parameters and nonlinear disturbances. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, and the parameter uncertainties appearing in the state and output equations are real, time dependent, and norm bounded. The time-delay and the nonlinear disturbances are assumed to be unknown. The purpose of the problem under investigation is to design a linear, delay-free, uncertainty-independent state estimator such that, for all admissible uncertainties as well as nonlinear disturbances, the dynamics of the estimation error is stochastically exponentially stable in the mean square, independent of the time delay. We address both the filtering analysis and synthesis issues, and show that the problem of exponential filtering for the class of uncertain time-delay jump systems with nonlinear disturbances can be solved in terms of the solutions to a set of linear (quadratic) matrix inequalities. A numerical example is exploited to demonstrate the usefulness of the developed theory.