Expand band gap and suppress bipolar excitation to optimize thermoelectric performance of Bi0.35Sb1.65Te3 sintered materials

[1]  Jun Jiang,et al.  Broadening the optimum thermoelectric power generation range of p-type sintered Bi0.4Sb1.6Te3 by suppressing bipolar effect , 2021 .

[2]  Jun Jiang,et al.  Enhanced Thermoelectric and Mechanical Performances in Sintered Bi0.48Sb1.52Te3-AgSbSe2 Composite. , 2021, ACS applied materials & interfaces.

[3]  Hsin-jay Wu,et al.  Nano-precipitation and carrier optimization synergistically yielding high-performance n-type Bi2Te3 thermoelectrics , 2021, Materials Today Physics.

[4]  Z. Ren,et al.  High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3 , 2021, Materials Today Physics.

[5]  Qingjie Zhang,et al.  Magnetoresistance-enhanced electro-thermal conversion performance , 2021, Materials Today Physics.

[6]  Jun Jiang,et al.  Achieving High Thermoelectric Performance of n-Type Bi2Te2.79Se0.21 Sintered Materials by Hot-Stacked Deformation. , 2021, ACS applied materials & interfaces.

[7]  S. Kim,et al.  Porous organic filler for high efficiency of flexible thermoelectric generator , 2021 .

[8]  G. J. Snyder,et al.  Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase , 2021, Advanced Functional Materials.

[9]  Di Li,et al.  Enhanced power factor and thermoelectric performance for n-type Bi2Te2.7Se0.3 based composites incorporated with 3D topological insulator nanoinclusions , 2021, Nano Energy.

[10]  Su-Dong Park,et al.  Particle size dependent anisotropic thermoelectric properties of N-type Bi2(Te,Se)3 alloys on hot deformation , 2020 .

[11]  Heping Xie,et al.  Leveraging Deep Levels in Narrow Bandgap Bi0.5Sb1.5Te3 for Record‐High zTave Near Room Temperature , 2020, Advanced Functional Materials.

[12]  Di Li,et al.  Ultralow Thermal Conductivity and High Thermoelectric Performance of N-type Bi2Te2.7Se0.3-Based Composites Incorporated with GaAs Nanoinclusions. , 2020, ACS applied materials & interfaces.

[13]  Xinbing Zhao,et al.  Tuning Optimum Temperature Range of Bi2Te3-Based Thermoelectric Materials by Defect Engineering. , 2020, Chemistry, an Asian journal.

[14]  Jun Jiang,et al.  Phonon Engineering for Thermoelectric Enhancement of p-Type Bismuth Telluride by Hot Pressing Texture Method. , 2020, ACS applied materials & interfaces.

[15]  Di Wu,et al.  Enhancing the figure of merit in thermoelectric materials by adding silicate aerogel , 2020 .

[16]  J. E. Lee,et al.  Development of p-type Bi2−xSbxTe3 thermoelectric materials for power generation application exploiting synergetic effect of Sb alloying and repress process , 2020 .

[17]  Xiaofang Lu,et al.  High‐Efficiency Thermoelectric Power Generation Enabled by Homogeneous Incorporation of MXene in (Bi,Sb)2Te3 Matrix , 2019, Advanced Energy Materials.

[18]  Di Li,et al.  Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record‐High Thermoelectric Performance in Chalcopyrite , 2019, Advanced materials.

[19]  Jun Jiang,et al.  Texture Development and Grain Alignment of Hot‐Pressed Tetradymite Bi 0.48 Sb 1.52 Te 3 via Powder Molding , 2019, Energy Technology.

[20]  M. Kanatzidis,et al.  3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance , 2019, Energy & Environmental Science.

[21]  Di Li,et al.  Achieving high thermoelectric performance through constructing coherent interfaces and building interface potential barriers in n-type Bi2Te3/Bi2Te2.7Se0.3 nanocomposites , 2019, Journal of Materials Chemistry A.

[22]  Q. Yang,et al.  Suppressing bipolar effect to broadening the optimum range of thermoelectric performance for p-type bismuth telluride–based alloys via calcium doping , 2019, Materials Today Physics.

[23]  Jinfeng Dong,et al.  Thermoelectric Cu-doped (Bi,Sb)2Te3: Performance enhancement and stability against high electric current pulse , 2019, Nano Energy.

[24]  G. J. Snyder,et al.  Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance , 2018, Energy & Environmental Science.

[25]  Gang Chen,et al.  Routes for high-performance thermoelectric materials , 2018, Materials Today.

[26]  Qian Zhang,et al.  Improved thermoelectric performance of p-type Bi0.5Sb1.5Te3 through Mn doping at elevated temperature , 2018, Materials Today Physics.

[27]  Xinbing Zhao,et al.  Tunable Optimum Temperature Range of High-Performance Zone Melted Bismuth-Telluride-Based Solid Solutions , 2018, Crystal Growth & Design.

[28]  M. Kanatzidis,et al.  High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe , 2018 .

[29]  M. R. A. Bhuiyan,et al.  A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications , 2018 .

[30]  Xinbing Zhao,et al.  Enhancing room temperature thermoelectric performance of n-type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation , 2017 .

[31]  B. Ge,et al.  Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects , 2017, Advanced materials.

[32]  Ping Lu,et al.  High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C , 2016 .

[33]  Tiejun Zhu,et al.  Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization , 2016 .

[34]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[35]  Jingfeng Li,et al.  Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure , 2016 .

[36]  G. J. Snyder,et al.  Dislocation strain as the mechanism of phonon scattering at grain boundaries , 2016 .

[37]  Tiejun Zhu,et al.  Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n‐Type Bismuth‐Telluride‐Based Solid Solutions , 2015 .

[38]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[39]  Xianli Su,et al.  Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials , 2015 .

[40]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[41]  Tiejun Zhu,et al.  Shifting up the optimum figure of merit of p -type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction , 2014 .

[42]  Xinbing Zhao,et al.  Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials , 2013 .

[43]  Y. Pei,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[44]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[45]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[46]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[47]  Qungui Du,et al.  Thermal Stress Analysis and Structure Parameter Selection for a Bi2Te3-Based Thermoelectric Module , 2011 .

[48]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[49]  J. Heath,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[50]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[51]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[52]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[53]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[54]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[55]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[56]  Jun Jiang,et al.  Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering , 2005 .

[57]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[58]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[59]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[60]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[61]  F. D. Rosi,et al.  Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300° K , 1966 .

[62]  R. Sehr,et al.  The optical properties of p-type Bi2Te3Sb2Te3 alloys between 2–15 microns , 1962 .

[63]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[64]  Hyoung-Seop Kim,et al.  Enhanced thermoelectric performance of Bi0.5Sb1.5Te3 composites through potential barrier scattering at heterogeneous interfaces , 2021 .

[65]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[66]  E. Conwell,et al.  Electrical and optical properties of some M2v−bN3vi−b semiconductors , 1957 .