Geochemical roots of autotrophic carbon fixation: Hydrothermal experiments in the system citric acid, H 2 O-(FeS)-(NiS)

[1]  S. Ochoa,et al.  CARBOXYLATION AND DECARBOXYLATION OF THE ENZYME * , 2003 .

[2]  M. Engel,et al.  Perspectives in Amino Acid and Protein Geochemistry , 2001 .

[3]  J. Seewald Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments , 2001 .

[4]  G. Cody,et al.  Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. , 2000, Science.

[5]  Jeremy J. Yang,et al.  The origin of intermediary metabolism. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Goodfriend Perspectives in amino acid and protein geochemistry , 2000 .

[7]  S. Miller,et al.  Does formate reduce alpha-ketoglutarate and ammonia to glutamate? , 1999, Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life.

[8]  Sungnam Park,et al.  Spectrophotometric measurement of the first dissociation constants of carbonic acid at elevated temperatures , 1998 .

[9]  C. D. de Ronde,et al.  Fluid chemistry of Archean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater , 1997 .

[10]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[11]  D. Sandwell,et al.  Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions , 1997 .

[12]  William E Seyfried,et al.  Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar , 1996 .

[13]  M. Kubal,et al.  Potential-pH diagram for Fe–H2O–citric acid system , 1995 .

[14]  L. Kam,et al.  Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water , 1994 .

[15]  Jeffrey S. Seewald,et al.  Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions , 1994, Nature.

[16]  H. Yanagawa,et al.  Marine hydrothermal systems and the origin of life: future research , 2012 .

[17]  G. Wächtershäuser,et al.  Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.

[18]  E. Shock Chemical environments of submarine hydrothermal systems. , 1992, Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life.

[19]  G. Andrews,et al.  Production of organic chemicals via bioconversion: A review of the potential , 1991 .

[20]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[21]  W. L. Noble,et al.  Organic Synthesis at High Pressures , 1991 .

[22]  B. Hoffman,et al.  Characterization of the [4Fe-4S]+ cluster at the active site of aconitase by 57Fe, 33S, and 14N electron nuclear double resonance spectroscopy. , 1990, Biochemistry.

[23]  A. Katritzky,et al.  Aqueous organic chemistry. 1. Aquathermolysis: comparison with thermolysis in the reactivity of aliphatic compounds , 1990 .

[24]  G. Wächtershäuser,et al.  Evolution of the first metabolic cycles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Beinert,et al.  Engineering of protein bound iron‐sulfur clusters , 1989 .

[26]  C. Winkel,et al.  Synthesis and Spectroscopic Study of 13C‐Labeled Citric Acids. , 1989 .

[27]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[28]  G. Wächtershäuser,et al.  Pyrite Formation, the First Energy Source for Life: a Hypothesis , 1988 .

[29]  K. Mopper,et al.  Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter , 1987, Nature.

[30]  R. C. Spencer NBS/NRC steam tables , 1985 .

[31]  Francis A. Carey,et al.  Advanced organic chemistry , 1983 .

[32]  W. L. Marshall,et al.  Ion Product of Water Substance, 0-1000 C, 1-10,000 Bars. New International Formulation and Its Background, , 1981 .

[33]  J. Baross,et al.  An Hypothesis Concerning the Relationships Between Submarine Hot Springs and the Origin of Life on Earth , 1981 .

[34]  J. Halket,et al.  Handbook of derivatives for chromatography , 1978 .

[35]  酒井 睦司 Studies of the isomerization of unsaturated carboxylic acids , 1977 .

[36]  M. Sakai Studies of the isomerization of unsaturated carboxylic acids. II. The thermal rearrangement of citraconic acid to itaconic acid in aqueous solutions. , 1976 .

[37]  I. Tabushi,et al.  Amino acid synthesis through biogenetic-type CO2 fixation , 1975, Nature.

[38]  大山 次郎 Research Techniques for High Pressure and Temperature : Gene C. Ulmer 編, B4判, 367ページ, 3790円, 1971年, Springer-Verlag , 1973 .

[39]  W. Kirsch,et al.  Anaerobic energy metabolism in brain tumors. , 1972, Progress in experimental tumor research.

[40]  H. Barnes,et al.  Ion-product constant of water to 350.deg. , 1972 .

[41]  G. Ulmer Research techniques for high pressure and high temperature , 1971 .

[42]  S. Clark,et al.  Handbook of physical constants , 1966 .

[43]  L. Paoloni Dissociation constants of organic acids in aqueous solution : G. Kortüm, W. Vogel and K. Andrussow, Butterworths, London, 1961, xxii + 347 pages, £ 2.108 , 1962 .

[44]  G. Kortüm,et al.  Disssociation constants of organic acids in aqueous solution , 1960 .

[45]  G. W. Wheland,et al.  Advanced Organic Chemistry , 1951, Nature.

[46]  B. Brown The mechanism of thermal decarboxylation , 1951 .

[47]  H. S. Yoder,et al.  High‐low quartz inversion up to 10,000 bars , 1950 .

[48]  R. T. Arnold,et al.  Thermal Decarboxylation of Unsaturated Acids , 1950 .

[49]  W. S. Johnson,et al.  The Acid-Catalyzed Decarboxylation of Cinnamic Acids , 1949 .

[50]  L. Gershbein,et al.  The Reaction of Hydrogen Sulfide with Acrylonitrile, Acrylic Ester and Crotonaldehyde , 1947 .

[51]  R. Linstead,et al.  XCIX.—Investigations of the olefinic acids. Part IV. The two types of tautomerism of itaconic acids and the connexion between configurational and tautomeric changes in alkali , 1931 .