Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci

In order to elucidate the functional organization of the genome, it is vital to directly visualize the interactions between genomic elements in living cells. For this purpose, we engineered the Cas9 protein from Staphylococcus aureus (SaCas9) for the imaging of endogenous genomic loci, which showed a similar robustness and efficiency as previously reported for Streptococcus pyogenes Cas9 (SpCas9). Imaging readouts allowed us to characterize the DNA-binding activity of SaCas9 and to optimize its sgRNA scaffold. Combining SaCas9 and SpCas9, we demonstrated two-color CRISPR imaging with the capability to resolve genomic loci spaced by <300 kb. Combinatorial color-mixing further enabled us to code multiple genomic elements in the same cell. Our results highlight the potential of combining SpCas9 and SaCas9 for multiplexed CRISPR-Cas9 applications, such as imaging and genome engineering.

[1]  J. Joung,et al.  Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition , 2015, Nature Biotechnology.

[2]  R. Tjian,et al.  Dynamics of CRISPR-Cas9 genome interrogation in living cells , 2015, Science.

[3]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[4]  Robert Tjian,et al.  CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells , 2015, Proceedings of the National Academy of Sciences.

[5]  Yinqing Li,et al.  Crystal Structure of Staphylococcus aureus Cas9 , 2015, Cell.

[6]  Eric S. Lander,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2015, Cell.

[7]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[8]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.

[9]  J. Rinn,et al.  Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display , 2015, Nature Methods.

[10]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[11]  Martin J. Aryee,et al.  Engineered CRISPR-Cas9 nucleases with altered PAM specificities , 2015, Nature.

[12]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[13]  Shaojie Zhang,et al.  Multicolor CRISPR labeling of chromosomal loci in human cells , 2015, Proceedings of the National Academy of Sciences.

[14]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[15]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[16]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[17]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[18]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[19]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[20]  Benjamin L. Oakes,et al.  Programmable RNA recognition and cleavage by CRISPR/Cas9 , 2014, Nature.

[21]  Mazhar Adli,et al.  Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease , 2014, Nature Biotechnology.

[22]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[23]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[24]  Kira S. Makarova,et al.  Classification and evolution of type II CRISPR-Cas systems , 2014, Nucleic acids research.

[25]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[26]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[27]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[28]  Heinrich Leonhardt,et al.  Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system , 2014, Nucleus.

[29]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[30]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[31]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[32]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[33]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[34]  J. Doudna,et al.  The use of CRISPR/Cas9, ZFNs, TALENs in generating site specific genome alterations , 2014 .

[35]  Baohui Chen,et al.  Imaging genomic elements in living cells using CRISPR/Cas9. , 2014, Methods in enzymology.

[36]  J. Doudna,et al.  Methods in Enzymology. The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specific genome alterations. Preface. , 2014, Methods in enzymology.

[37]  Luke A. Gilbert,et al.  CRISPR interference (CRISPRi) for sequence-specific control of gene expression , 2013, Nature Protocols.

[38]  G. Church,et al.  Cas9 as a versatile tool for engineering biology , 2013, Nature Methods.

[39]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[40]  Toshitsugu Fujita,et al.  Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. , 2013, Biochemical and biophysical research communications.

[41]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[42]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[43]  T. Misteli,et al.  Spatial Dynamics of Chromosome Translocations in Living Cells , 2013, Science.

[44]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[45]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[46]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[47]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[48]  Jeffry D. Sander,et al.  Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System , 2013, PloS one.

[49]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[50]  Yulia Yuzenkova,et al.  Mechanism of Eukaryotic RNA Polymerase III Transcription Termination , 2013, Science.

[51]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[52]  Feng Zhang,et al.  Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system , 2013, Nucleic acids research.

[53]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[54]  T. Misteli The Cell Biology of Genomes: Bringing the Double Helix to Life , 2013, Cell.

[55]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[56]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[57]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[58]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[59]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[60]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[61]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[62]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[63]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[64]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[65]  Konstantin Severinov,et al.  Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence , 2011, Proceedings of the National Academy of Sciences.

[66]  Albert J R Heck,et al.  RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions , 2011, Proceedings of the National Academy of Sciences.

[67]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[68]  A. Belmont,et al.  Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template , 2009, The Journal of cell biology.

[69]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[70]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[71]  A. Pierce,et al.  Genomic architecture and inheritance of human ribosomal RNA gene clusters. , 2007, Genome research.

[72]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[73]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[74]  N. Moniaux,et al.  Human mucin gene MUC4: organization of its 5'-region and polymorphism of its central tandem repeat array. , 1998, The Biochemical journal.