A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21 cm Global Spectrum
暂无分享,去创建一个
Jordan Mirocha | Edward J. Wollack | Jack O. Burns | Abhirup Datta | Dayton L. Jones | Steven Furlanetto | Abraham Loeb | Justin C. Kasper | William Purcell | Keith Tauscher | Richard Bradley | Robert MacDowall | Anastasia Fialkov | A. Loeb | J. Pritchard | J. Kasper | J. Bowman | R. Bradley | S. Furlanetto | E. Switzer | W. Purcell | A. Fialkov | J. Burns | D. Rapetti | R. Macdowall | A. Datta | R. Monsalve | J. Mirocha | B. Nhan | K. Tauscher | Judd Bowman | Eric Switzer | Jonathan Pritchard | Raul Monsalve | David Rapetti | David Newell | David Draper | Bang Nhan | Dayton Jones | Michael Bicay | M. Bicay | D. Newell | David Draper
[1] Cambridge,et al. An MCMC approach to extracting the global 21‐cm signal during the cosmic dawn from sky‐averaged radio observations , 2011, 1107.3154.
[2] E. Purcell,et al. Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec. , 1951, Nature.
[3] L. Koopmans,et al. Chromatic effects in the 21 cm global signal from the cosmic dawn , 2013, 1306.2172.
[4] M. Kaiser,et al. Terrestrial kilometric radiation, 1. Spatial structure studies , 1976 .
[5] W. Farrell,et al. Periodic bursts of Jovian non-Io decametric radio emission , 2013, Planetary and space science.
[6] D. Glenar,et al. Optical scattering processes observed at the Moon: Predictions for the LADEE Ultraviolet Spectrometer , 2010 .
[7] J. Pober,et al. Constraints on the temperature of the intergalactic medium at z = 8.4 with 21-cm observations , 2015, 1509.02158.
[8] L. Bruzzone,et al. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter , 2011 .
[9] The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.
[10] M. Maksimović,et al. Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver , 2013, 1303.1109.
[11] Xinan Yue,et al. Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements , 2011 .
[12] J. May,et al. All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz , 2010, 1011.4298.
[13] A. Rogers,et al. A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.
[14] R. Ekers,et al. BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal , 2015, Publications of the Astronomical Society of Australia.
[15] V. Rumsey. Frequency independent antennas , 1966 .
[16] S. Furlanetto,et al. The global 21-cm signal in the context of the high- z galaxy luminosity function , 2016, 1607.00386.
[17] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[18] Nipanjana Patra,et al. SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization , 2012, 1211.3800.
[19] Abraham Loeb,et al. Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal , 2010, 1005.4057.
[20] A. H. Patil,et al. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz , 2014, 1407.4244.
[21] Stephen J. Keihm,et al. Lunar Microwave Brightness Temperature Observations Reevaluated in the Light of Apollo Program Findings , 1975 .
[22] A. Loeb,et al. The First Galaxies in the Universe , 2013 .
[23] T. Lazio,et al. Radio recombination lines at decametre wavelengths - Prospects for the future , 2010, 1010.0292.
[24] J. Shull,et al. X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .
[25] A. Rogers,et al. SPECTRAL INDEX OF THE DIFFUSE RADIO BACKGROUND MEASURED FROM 100 TO 200 MHz , 2008, 0806.2868.
[26] S. A. Wouthuysen. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. , 1952 .
[27] Joshua O. Gundersen,et al. The Q/U Imaging ExperimenT Instrument , 2013 .
[28] S. Bharadwaj,et al. The cosmic microwave background radiation fluctuations from H i perturbations prior to reionization , 2004 .
[29] J. Evans. Radar Studies of Planetary Surfaces , 1969 .
[30] Nipanjana Patra,et al. SARAS MEASUREMENT OF THE RADIO BACKGROUND AT LONG WAVELENGTHS , 2014, 1412.7762.
[31] F. Schinzel,et al. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn , 2016, 1606.06006.
[32] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[33] M. Halpern,et al. THEMICROWAVE ANISOTROPY PROBE (MAP )1 MISSION , 2003 .
[34] Morgan Presley,et al. MEASURING THE COSMOLOGICAL 21 cm MONOPOLE WITH AN INTERFEROMETER , 2015, 1501.01633.
[35] A. Rogers,et al. CALIBRATION OF THE EDGES HIGH-BAND RECEIVER TO OBSERVE THE GLOBAL 21 cm SIGNATURE FROM THE EPOCH OF REIONIZATION , 2016, 1602.08065.
[36] L. Koopmans,et al. Scintillation noise in widefield radio interferometry , 2014, 1412.1420.
[37] A. Rogers,et al. Radiometric measurements of electron temperature and opacity of ionospheric perturbations , 2014, 1412.2255.
[38] U. Colorado,et al. Parametrizations of the 21-cm global signal and parameter estimation from single-dipole experiments , 2015, 1510.00271.
[39] A. Rogers,et al. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements , 2015, 1510.03477.
[40] Max Tegmark,et al. Global 21 cm signal experiments: A designer’s guide , 2012, 1211.3743.
[41] G. Hinshaw,et al. Cosmic Microwave Background , 2013 .
[42] S. Tingay,et al. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL , 2015, 1509.06125.
[43] P. Kaaret,et al. Enhanced X-ray emission from Lyman break analogues and a possible LX–SFR–metallicity plane , 2016, 1602.01091.
[44] M. C. Toribio,et al. DISCOVERY OF CARBON RADIO RECOMBINATION LINES IN M82 , 2014, Proceedings of the International Astronomical Union.
[45] O. López-Cruz,et al. PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT , 2013, 1311.0014.
[46] Martin J. Rees,et al. 21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .
[47] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[48] I. Paris,et al. Constraining the redshifted 21-cm signal with the unresolved soft X-ray background , 2016, 1602.07322.
[49] Va,et al. Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2011, 1106.5194.
[50] R. Bradley,et al. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements , 2016, 1611.06062.
[51] P. Preka-Papadema,et al. On signal–noise decomposition of time‐series using the continuous wavelet transform: application to sunspot index , 2003 .
[52] K. Galal,et al. DARE Mission Design: Low RFI Observations from a Low-Altitude, Frozen Lunar Orbit , 2017, 1702.00286.
[53] A. Komjathy,et al. THE EFFECTS OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL 21 cm SIGNAL FROM THE COSMIC DAWN AND THE DARK AGES , 2014, 1409.0513.
[54] S. Furlanetto,et al. Secondary ionization and heating by fast electrons , 2009, 0910.4410.
[55] E. Stanway,et al. Spectral population synthesis including massive binaries , 2009, 0908.1386.
[56] On the Detection of Global 21-cm Signal from Reionization Using Interferometers , 2015, 1505.02491.
[57] R. Sunyaev,et al. X-ray emission from star-forming galaxies – I. High-mass X-ray binaries , 2011, 1105.4610.
[58] M. J. Bentum,et al. Initial LOFAR observations of epoch of reionization windows: II. Diffuse polarized emission in the ELAIS-N1 field , 2014, 1407.2093.
[59] A. Rogers,et al. Improved measurement of the spectral index of the diffuse radio background between 90 and 190 MHz , 2016, 1609.08705.
[60] Dejan S. Filipovic,et al. Frequency Independent Antennas , 2005 .
[61] M. Morales,et al. Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.
[62] Max Tegmark,et al. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.
[63] S. Oh,et al. Systematic effects of foreground removal in 21-cm surveys of reionization , 2010, 1010.4109.
[64] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[65] C. A. Oxborrow,et al. Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.
[66] George B. Field,et al. Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.
[67] A. Loeb,et al. Measuring the redshift of reionization with a modest array of low-frequency dipoles , 2010, 1006.5460.
[68] C. Mercier,et al. Coronal Radio Bursts: A Signature of Nanoflares? , 1997 .
[69] Christopher Hirata,et al. A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.
[70] A. Loeb,et al. A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.
[71] R. Cen,et al. 21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.
[72] D. C. Rohlfs,et al. Lunar radio-reflection properties at decameter wavelengths , 1964 .
[73] A. R. Whitney,et al. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY , 2012, 1211.1433.
[74] A. H. Patil,et al. Linear polarization structures in LOFAR observations of the interstellar medium in the 3C 196 field , 2015, 1508.06650.
[75] N. Meyer‐Vernet. Comet Giacobini-Zinner diagnosis from radio measurements , 1985 .
[76] Adrian Liu,et al. ERASING THE VARIABLE: EMPIRICAL FOREGROUND DISCOVERY FOR GLOBAL 21 cm SPECTRUM EXPERIMENTS , 2014, 1404.7561.
[77] G. Bernardi,et al. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20 , 2014, 1404.0887.
[78] P. Graff,et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.
[79] Abraham Loeb,et al. 21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.
[80] A. R. Whitney,et al. LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE , 2016, 1607.05779.
[81] Max Tegmark,et al. An Improved Model of Diffuse Galactic Radio Emission from 10 MHz to 5 THz , 2016, 1605.04920.
[82] G. Harker,et al. INTERPRETING THE GLOBAL 21-cm SIGNAL FROM HIGH REDSHIFTS. II. PARAMETER ESTIMATION FOR MODELS OF GALAXY FORMATION , 2015, 1509.07868.
[83] S. Furlanetto,et al. Constraints on the star formation efficiency of galaxies during the epoch of reionization , 2015, 1512.06219.
[84] M. Gilfanov,et al. X-ray emission from star-forming galaxies - II. Hot interstellar medium , 2012, 1205.3715.
[85] M. P. Hobson,et al. polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.