A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21 cm Global Spectrum

Author(s): Burns, Jack O; Bradley, Richard; Tauscher, Keith; Furlanetto, Steven; Mirocha, Jordan; Monsalve, Raul; Rapetti, David; Purcell, William; Newell, David; Draper, David; MacDowall, Robert; Bowman, Judd; Nhan, Bang; Wollack, Edward J; Fialkov, Anastasia; Jones, Dayton; Kasper, Justin C; Loeb, Abraham; Datta, Abhirup; Pritchard, Jonathan; Switzer, Eric; Bicay, Michael

[1]  Cambridge,et al.  An MCMC approach to extracting the global 21‐cm signal during the cosmic dawn from sky‐averaged radio observations , 2011, 1107.3154.

[2]  E. Purcell,et al.  Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec. , 1951, Nature.

[3]  L. Koopmans,et al.  Chromatic effects in the 21 cm global signal from the cosmic dawn , 2013, 1306.2172.

[4]  M. Kaiser,et al.  Terrestrial kilometric radiation, 1. Spatial structure studies , 1976 .

[5]  W. Farrell,et al.  Periodic bursts of Jovian non-Io decametric radio emission , 2013, Planetary and space science.

[6]  D. Glenar,et al.  Optical scattering processes observed at the Moon: Predictions for the LADEE Ultraviolet Spectrometer , 2010 .

[7]  J. Pober,et al.  Constraints on the temperature of the intergalactic medium at z = 8.4 with 21-cm observations , 2015, 1509.02158.

[8]  L. Bruzzone,et al.  Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter , 2011 .

[9]  The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.

[10]  M. Maksimović,et al.  Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver , 2013, 1303.1109.

[11]  Xinan Yue,et al.  Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements , 2011 .

[12]  J. May,et al.  All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz , 2010, 1011.4298.

[13]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[14]  R. Ekers,et al.  BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal , 2015, Publications of the Astronomical Society of Australia.

[15]  V. Rumsey Frequency independent antennas , 1966 .

[16]  S. Furlanetto,et al.  The global 21-cm signal in the context of the high- z galaxy luminosity function , 2016, 1607.00386.

[17]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[18]  Nipanjana Patra,et al.  SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization , 2012, 1211.3800.

[19]  Abraham Loeb,et al.  Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal , 2010, 1005.4057.

[20]  A. H. Patil,et al.  Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz , 2014, 1407.4244.

[21]  Stephen J. Keihm,et al.  Lunar Microwave Brightness Temperature Observations Reevaluated in the Light of Apollo Program Findings , 1975 .

[22]  A. Loeb,et al.  The First Galaxies in the Universe , 2013 .

[23]  T. Lazio,et al.  Radio recombination lines at decametre wavelengths - Prospects for the future , 2010, 1010.0292.

[24]  J. Shull,et al.  X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .

[25]  A. Rogers,et al.  SPECTRAL INDEX OF THE DIFFUSE RADIO BACKGROUND MEASURED FROM 100 TO 200 MHz , 2008, 0806.2868.

[26]  S. A. Wouthuysen On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. , 1952 .

[27]  Joshua O. Gundersen,et al.  The Q/U Imaging ExperimenT Instrument , 2013 .

[28]  S. Bharadwaj,et al.  The cosmic microwave background radiation fluctuations from H i perturbations prior to reionization , 2004 .

[29]  J. Evans Radar Studies of Planetary Surfaces , 1969 .

[30]  Nipanjana Patra,et al.  SARAS MEASUREMENT OF THE RADIO BACKGROUND AT LONG WAVELENGTHS , 2014, 1412.7762.

[31]  F. Schinzel,et al.  Bayesian constraints on the global 21-cm signal from the Cosmic Dawn , 2016, 1606.06006.

[32]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[33]  M. Halpern,et al.  THEMICROWAVE ANISOTROPY PROBE (MAP )1 MISSION , 2003 .

[34]  Morgan Presley,et al.  MEASURING THE COSMOLOGICAL 21 cm MONOPOLE WITH AN INTERFEROMETER , 2015, 1501.01633.

[35]  A. Rogers,et al.  CALIBRATION OF THE EDGES HIGH-BAND RECEIVER TO OBSERVE THE GLOBAL 21 cm SIGNATURE FROM THE EPOCH OF REIONIZATION , 2016, 1602.08065.

[36]  L. Koopmans,et al.  Scintillation noise in widefield radio interferometry , 2014, 1412.1420.

[37]  A. Rogers,et al.  Radiometric measurements of electron temperature and opacity of ionospheric perturbations , 2014, 1412.2255.

[38]  U. Colorado,et al.  Parametrizations of the 21-cm global signal and parameter estimation from single-dipole experiments , 2015, 1510.00271.

[39]  A. Rogers,et al.  Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements , 2015, 1510.03477.

[40]  Max Tegmark,et al.  Global 21 cm signal experiments: A designer’s guide , 2012, 1211.3743.

[41]  G. Hinshaw,et al.  Cosmic Microwave Background , 2013 .

[42]  S. Tingay,et al.  THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL , 2015, 1509.06125.

[43]  P. Kaaret,et al.  Enhanced X-ray emission from Lyman break analogues and a possible LX–SFR–metallicity plane , 2016, 1602.01091.

[44]  M. C. Toribio,et al.  DISCOVERY OF CARBON RADIO RECOMBINATION LINES IN M82 , 2014, Proceedings of the International Astronomical Union.

[45]  O. López-Cruz,et al.  PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT , 2013, 1311.0014.

[46]  Martin J. Rees,et al.  21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .

[47]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[48]  I. Paris,et al.  Constraining the redshifted 21-cm signal with the unresolved soft X-ray background , 2016, 1602.07322.

[49]  Va,et al.  Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2011, 1106.5194.

[50]  R. Bradley,et al.  A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements , 2016, 1611.06062.

[51]  P. Preka-Papadema,et al.  On signal–noise decomposition of time‐series using the continuous wavelet transform: application to sunspot index , 2003 .

[52]  K. Galal,et al.  DARE Mission Design: Low RFI Observations from a Low-Altitude, Frozen Lunar Orbit , 2017, 1702.00286.

[53]  A. Komjathy,et al.  THE EFFECTS OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL 21 cm SIGNAL FROM THE COSMIC DAWN AND THE DARK AGES , 2014, 1409.0513.

[54]  S. Furlanetto,et al.  Secondary ionization and heating by fast electrons , 2009, 0910.4410.

[55]  E. Stanway,et al.  Spectral population synthesis including massive binaries , 2009, 0908.1386.

[56]  On the Detection of Global 21-cm Signal from Reionization Using Interferometers , 2015, 1505.02491.

[57]  R. Sunyaev,et al.  X-ray emission from star-forming galaxies – I. High-mass X-ray binaries , 2011, 1105.4610.

[58]  M. J. Bentum,et al.  Initial LOFAR observations of epoch of reionization windows: II. Diffuse polarized emission in the ELAIS-N1 field , 2014, 1407.2093.

[59]  A. Rogers,et al.  Improved measurement of the spectral index of the diffuse radio background between 90 and 190 MHz , 2016, 1609.08705.

[60]  Dejan S. Filipovic,et al.  Frequency Independent Antennas , 2005 .

[61]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[62]  Max Tegmark,et al.  A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.

[63]  S. Oh,et al.  Systematic effects of foreground removal in 21-cm surveys of reionization , 2010, 1010.4109.

[64]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[65]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[66]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.

[67]  A. Loeb,et al.  Measuring the redshift of reionization with a modest array of low-frequency dipoles , 2010, 1006.5460.

[68]  C. Mercier,et al.  Coronal Radio Bursts: A Signature of Nanoflares? , 1997 .

[69]  Christopher Hirata,et al.  A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.

[70]  A. Loeb,et al.  A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.

[71]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[72]  D. C. Rohlfs,et al.  Lunar radio-reflection properties at decameter wavelengths , 1964 .

[73]  A. R. Whitney,et al.  LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY , 2012, 1211.1433.

[74]  A. H. Patil,et al.  Linear polarization structures in LOFAR observations of the interstellar medium in the 3C 196 field , 2015, 1508.06650.

[75]  N. Meyer‐Vernet Comet Giacobini-Zinner diagnosis from radio measurements , 1985 .

[76]  Adrian Liu,et al.  ERASING THE VARIABLE: EMPIRICAL FOREGROUND DISCOVERY FOR GLOBAL 21 cm SPECTRUM EXPERIMENTS , 2014, 1404.7561.

[77]  G. Bernardi,et al.  FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20 , 2014, 1404.0887.

[78]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[79]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[80]  A. R. Whitney,et al.  LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE , 2016, 1607.05779.

[81]  Max Tegmark,et al.  An Improved Model of Diffuse Galactic Radio Emission from 10 MHz to 5 THz , 2016, 1605.04920.

[82]  G. Harker,et al.  INTERPRETING THE GLOBAL 21-cm SIGNAL FROM HIGH REDSHIFTS. II. PARAMETER ESTIMATION FOR MODELS OF GALAXY FORMATION , 2015, 1509.07868.

[83]  S. Furlanetto,et al.  Constraints on the star formation efficiency of galaxies during the epoch of reionization , 2015, 1512.06219.

[84]  M. Gilfanov,et al.  X-ray emission from star-forming galaxies - II. Hot interstellar medium , 2012, 1205.3715.

[85]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.