All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms.

A family of segmented all-electron relativistically contracted (SARC) basis sets for the elements Hf-Hg is constructed for use in conjunction with the Douglas-Kroll-Hess (DKH) and zeroth-order regular approximation (ZORA) scalar relativistic Hamiltonians. The SARC basis sets are loosely contracted and thus offer computational advantages compared to generally contracted relativistic basis sets, while their sufficiently small size allows them to be used in place of effective core potentials (ECPs) for routine studies of molecules. Practical assessments of the SARC basis sets in DFT calculations of atomic (ionization energies) as well as molecular properties (geometries and bond dissociation energies for MHn complexes) confirm that the basis sets yield accurate and reliable results, providing a balanced description of core and valence electron densities. CCSD(T) calculations on a series of gold diatomic compounds also demonstrate the applicability of the basis sets to correlated methods. The SARC basis sets will be of most utility in calculating molecular properties for which the core electrons cannot be neglected, such as studies of electron paramagnetic resonance, Mössbauer and X-ray absorption spectra, and topological analysis of electron densities.

[1]  K. Fægri Even tempered basis sets for four-component relativistic quantum chemistry , 2005 .

[2]  So Hirata,et al.  Third-order Douglas-Kroll relativistic coupled-cluster theory through connected single, double, triple, and quadruple substitutions: applications to diatomic and triatomic hydrides. , 2004, The Journal of chemical physics.

[3]  F. Weinhold,et al.  Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds , 1979 .

[4]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[5]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[6]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[7]  Masahiro Sekiya,et al.  Relativistic correlating basis sets for actinide atoms from 90Th to 103Lr , 2007, J. Comput. Chem..

[8]  M. Filatov On representation of the Hamiltonian matrix elements in relativistic regular approximation , 2002 .

[9]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[10]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[11]  Tungsten in biological systems , 1996 .

[12]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[13]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[14]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[15]  Clark R. Landis,et al.  Valence and extra‐valence orbitals in main group and transition metal bonding , 2007, J. Comput. Chem..

[16]  R. Ahlrichs,et al.  Contracted all-electron Gaussian basis sets for atoms Rb to Xe , 2000 .

[17]  W. Hagen,et al.  The bio-inorganic chemistry of tungsten , 1997 .

[18]  L. Visscher,et al.  ON THE DISTINCTION BETWEEN SCALAR AND SPIN-ORBIT RELATIVISTIC EFFECTS , 1999 .

[19]  Eisaku Miyoshi,et al.  Relativistic correlating basis sets for lanthanide atoms from Ce to Lu , 2006, J. Comput. Chem..

[20]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[21]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements: Molecular test for M2 (M=Ag, Au) and MH (M=Ru, Os) , 1991 .

[22]  Wenjian Liu,et al.  Spectroscopic constants of gold and eka-gold (element 111) diatomic compounds: The importance of spin–orbit coupling , 1999 .

[23]  C. Wüllen Sixth-order Douglas–Kroll: two-component reference data for one-electron ions from 1s12 through 4f72 , 2005 .

[24]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[25]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[26]  I. Lindgren,et al.  A relativistic pair equation projected onto positive energy states , 1987 .

[27]  T. Tsuchiya,et al.  Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation , 2001 .

[28]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[29]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. I. General theory. , 2004, The Journal of chemical physics.

[30]  C. Landis,et al.  A VALENCE BOND PERSPECTIVE ON THE MOLECULAR SHAPES OF SIMPLE METAL ALKYLS AND HYDRIDES , 1998 .

[31]  F. Weigend,et al.  Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr , 2003 .

[32]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[33]  Evert Jan Baerends,et al.  Roothaan-Hartree-Fock-Slater atomic wave functions , 1981 .

[34]  D. Cremer,et al.  On the physical meaning of the ZORA Hamiltonian , 2003 .

[35]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[36]  B. Miguel,et al.  A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents , 1990 .

[37]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[38]  K. Hirao,et al.  On the transferability of relativistic pseudopotentials in density-functional calculations: AuH, AuCl, and Au2 , 2000 .

[39]  N. Farrell Uses of inorganic chemistry in medicine , 2007 .

[40]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on the gold atom and gold hydride in the framework of the douglas-kroll transformation , 1994 .

[41]  D. Cremer,et al.  A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications. , 2005, The Journal of chemical physics.

[42]  D. Cremer,et al.  Relativistically corrected geometries obtained with analytical gradients: normalized elimination of the small component using an effective potential , 2003 .

[43]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[44]  J. Uddin,et al.  Computational Studies of Metal-Ligand Bond Enthalpies across the Transition Metal Series , 2006 .

[45]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[46]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[47]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[48]  K. Peterson,et al.  Multiple bonds to gold: a theoretical investigation of XAuC (X = F, Cl, Br, I) molecules , 2005 .

[49]  Michael Dolg,et al.  Relativistic energy‐consistent pseudopotentials—Recent developments , 2002, J. Comput. Chem..

[50]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. , 2006, The Journal of chemical physics.

[51]  G. Frenking,et al.  Topological analysis of electron density distribution taken from a pseudopotential calculation , 1997, J. Comput. Chem..

[52]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[53]  Christoph van Wüllen,et al.  Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations , 1998 .

[54]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[55]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[56]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. , 2006, The Journal of chemical physics.

[57]  Gerry,et al.  The Pure Rotational Spectra of AuCl and AuBr. , 2000, Journal of Molecular Spectroscopy.

[58]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[59]  O'brien,et al.  Fourier Transform Emission Spectroscopy of the Visible Transitions of AuCl. , 1999, Journal of molecular spectroscopy.

[60]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[61]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[62]  Christoph van Wüllen,et al.  Relativistic all-electron density functional calculations , 1999, J. Comput. Chem..

[63]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[64]  Markus Reiher,et al.  Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry , 2006 .

[65]  F. Weinhold,et al.  Natural population analysis , 1985 .

[66]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[67]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[68]  Wenjian Liu,et al.  Response to “Comment on ‘Quasirelativistic theory equivalent to fully relativistic theory’ ” [J. Chem. Phys. 123, 241102 (2005)] , 2006 .

[69]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[70]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on Au2 in the framework of the Douglas–Kroll transformation , 2000 .

[71]  Rodney J. Bartlett,et al.  An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen , 1988 .

[72]  Yoshihiro Watanabe,et al.  Relativistic Gaussian basis sets for molecular calculations: Fully optimized single‐family exponent basis sets for HHg , 2006, J. Comput. Chem..

[73]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[74]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[75]  M. Reiher,et al.  Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation. , 2004, The Journal of chemical physics.

[76]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[77]  H. Lee,et al.  Spin-orbit effects calculated by two-component coupled-cluster methods: test calculations on AuH, Au2, TlH and Tl2 , 1998 .

[78]  Arne Rosén,et al.  RELATIVISTIC CALCULATIONS OF ELECTRON BINDING ENERGIES BY A MODIFIED HARTREE--FOCK--SLATER METHOD. , 1968 .

[79]  K. Dyall,et al.  Relativistic regular approximations revisited: An infinite-order relativistic approximation , 1999 .

[80]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[81]  K. Hirao,et al.  Accurate relativistic Gaussian basis sets determined by the third-order Douglas–Kroll approximation with a finite-nucleus model , 2002 .

[82]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[83]  F. Neese,et al.  Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations. , 2005, The Journal of chemical physics.

[84]  C. Evans,et al.  The Pure Rotational Spectrum of AuI. , 2001, Journal of molecular spectroscopy.

[85]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[86]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[87]  T. Okabayashi,et al.  Millimeter- and submillimeter-wave spectroscopy of AuF in the ground state , 2002 .

[88]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[89]  C. Landis,et al.  Making Sense of the Shapes of Simple Metal Hydrides , 1995 .

[90]  Lindgren,et al.  Comment on relativistic wave equations and negative-energy states. , 1986, Physical review. A, General physics.

[91]  D. Cremer,et al.  Analytic energy derivatives for regular approximations of relativistic effects applicable to methods with and without correlation corrections , 2003 .

[92]  Markus Reiher,et al.  Regular no-pair Dirac operators: Numerical study of the convergence of high-order Douglas–Kroll–Hess transformations , 2007 .

[93]  Clark R. Landis,et al.  Valency and Bonding: Author index , 2005 .

[94]  G. Chambaud,et al.  Electronic structure and spectroscopy of monohalides of metals of group I-B , 2002 .

[95]  Werner Kutzelnigg,et al.  Quasirelativistic theory I. Theory in terms of a quasi-relativistic operator , 2006 .

[96]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[97]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.