The Fault Diagnosis using Two-Steps Neural Networks for Nuclear Power Plants

Operating the nuclear power generations safely is not easy way because nuclear power generations are very complicated systems. In the main control room of the nuclear power generations, about 4000 numbers of alarms and monitoring devices are equipped to handle the signals corresponding to operating equipments. Thus, operators have to deal with massive information and to analyze the situation immediately. If they could not achieve these task, then they should make big problem in the power generations. Owing to too many variables, operators could be also in the uncontrolled situation. So in this paper, the fault diagnosis system is designed using 2-steps neural networks. This diagnosis method is based on the pattern of the principal variables which could represent the type and severity of faults.