Framework for sequential approximate optimization

An object-oriented framework for sequential approximate optimization (SAO) is proposed. The framework aims to provide an open environment for the specification and implementation of SAO strategies. The framework is based on the Python programming language and contains a toolbox of Python classes, methods, and interfaces to external software. The framework distinguishes modules related to the optimization problem, the SAO sequence, and the numerical routines used in the SAO approach. The problem-related modules specify the optimization problem, including the simulation model for the evaluation of the objective function and constraints. The sequence-related modules specify the sequence of SAO steps. The routine-related modules represent numerical routines used in the SAO steps as “black-box” functions with predefined input and output, e.g., from external software libraries. The framework enables the user to (re-) specify or extend the SAO dependent modules, which is generally impossible in most available SAO implementations. This is highly advantageous since many SAO approaches are application-domain specific due to the type of approximation functions used. A ten-bar truss design problem with fixed loads as well as uncertain loads is used as an illustration and demonstrates the flexibility of the framework.

[1]  Pauli Pedersen,et al.  The Integrated Approach of FEM-SLP for Solving Problems of Optimal Design , 1981 .

[2]  A. J. G. Schoofs,et al.  Crash worthiness design optimization using multipoint sequential linear programming , 1996 .

[3]  Ken J. Craig,et al.  An improved version of DYNAMIC‐Q for simulation‐based optimization using response surface gradients and an adaptive trust region , 2003 .

[4]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .

[5]  G. Vanderplaats Approximation concepts for numerical airfoil optimization , 1979 .

[6]  J. Barthelemy,et al.  Two point exponential approximation method for structural optimization , 1990 .

[7]  Vassili Toropov,et al.  Multiparameter structural optimization using FEM and multipoint explicit approximations , 1993 .

[8]  Matthias Kalle Dalheimer,et al.  Programming with Qt , 1999 .

[9]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[10]  L. Watson,et al.  An interior-point sequential approximate optimization methodology , 2004 .

[11]  Ken J. Craig,et al.  Worst‐case design in head impact crashworthiness optimization , 2003 .

[12]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[13]  H. Thomas,et al.  A study of move limit adjustment strategies in the approximation concepts approach to structural synthesis , 1992 .

[14]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Reference Manual , 2001 .

[15]  V. Braibant,et al.  Structural optimization: A new dual method using mixed variables , 1986 .

[16]  J. P. Evans,et al.  Interdigitation for effective design space exploration using iSIGHT , 2002 .

[17]  Ivar Jacobson,et al.  Unified Modeling Language , 2020, Definitions.

[18]  R. Haftka,et al.  Structural design under bounded uncertainty-optimization with anti-optimization , 1994 .

[19]  G. vanRossum Extending and embedding the Python interpreter , 1995 .

[20]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[21]  Garret N. Vanderplaats,et al.  CONMIN: A FORTRAN program for constrained function minimization: User's manual , 1973 .

[22]  Ramana V. Grandhi,et al.  Improved two-point function approximations for design optimization , 1995 .

[23]  C. Fleury,et al.  A family of MMA approximations for structural optimization , 2002 .

[24]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Developers Manual (title change from electronic posting) , 2002 .

[25]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[26]  G. Fadel,et al.  Automatic evaluation of move-limits in structural optimization , 1993 .

[27]  J. Renaud,et al.  New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 2 , 1998 .

[28]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[29]  V. Markine,et al.  Refinements in the multi-point approximation method to reduce the effects of noisy structural responses , 1996 .

[30]  Layne T. Watson,et al.  Two-point constraint approximation in structural optimization , 1987 .

[31]  Herbert Hamers,et al.  Constrained optimization involving expensive function evaluations: A sequential approach , 2005, Eur. J. Oper. Res..

[32]  L. Schmit,et al.  Some Approximation Concepts for Structural Synthesis , 1974 .

[33]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[34]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[35]  J. Snyman,et al.  The Dynamic-Q optimization method: An alternative to SQP? , 2002 .

[36]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Modeling and Computation , 1988 .

[37]  Michael S. Eldred,et al.  IMPLEMENTATION OF A TRUST REGION MODEL MANAGEMENT STRATEGY IN THE DAKOTA OPTIMIZATION TOOLKIT , 2000 .