d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.

[1]  I. Powis,et al.  Valence shell one-photon photoelectron circular dichroism in chiral systems , 2015 .

[2]  C. Chyba Impact delivery and erosion of planetary oceans in the early inner Solar System , 1990, Nature.

[3]  Y. Takano,et al.  An experimental study on impact‐induced alterations of planetary organic simulants , 2018 .

[4]  D. Blackmond,et al.  Evolution of solid phase homochirality for a proteinogenic amino acid. , 2008, Journal of the American Chemical Society.

[5]  Laurent Nahon,et al.  ENANTIOMERIC EXCESSES INDUCED IN AMINO ACIDS BY ULTRAVIOLET CIRCULARLY POLARIZED LIGHT IRRADIATION OF EXTRATERRESTRIAL ICE ANALOGS: A POSSIBLE SOURCE OF ASYMMETRY FOR PREBIOTIC CHEMISTRY , 2014 .

[6]  M. Tamura,et al.  Near-Infrared Circular Polarimetry and Correlation Diagrams in the Orion Becklin-Neugebauer/Kleinman-Low Region: Contribution of Dichroic Extinction , 2009 .

[7]  A. Schieber,et al.  Determination of amino acid enantiomers in human urine and blood serum by gas chromatography-mass spectrometry. , 2001, Biomedical chromatography : BMC.

[8]  Jun-ichi Takahashi,et al.  Circular dichroism of amino acids in the vacuum-ultraviolet region. , 2010, Angewandte Chemie.

[9]  Kentaro Uesugi,et al.  Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith , 2011, Science.

[10]  Theo Rasing,et al.  Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. , 2009, Nature chemistry.

[11]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids. , 1986, Geochimica et cosmochimica acta.

[12]  E. Okuma,et al.  Distribution of Free D-Amino Acids in the Tissues of Crustaceans , 1995 .

[13]  J. McBride,et al.  Enantiomer-specific oriented attachment: formation of macroscopic homochiral crystal aggregates from a racemic system. , 2013, Angewandte Chemie.

[14]  K. Kvenvolden,et al.  Amino Acids Indigenous to the Murray Meteorite , 1971, Science.

[15]  C. Szopa,et al.  MOMA: the challenge to search for organics and biosignatures on Mars , 2016, International Journal of Astrobiology.

[16]  E. Vlieg,et al.  Complete Deracemization of Proteinogenic Glutamic Acid Using Viedma Ripening on a Metastable Conglomerate , 2012 .

[17]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[18]  Y. Takano,et al.  Possible cometary organic compounds as sources of planetary biospheres , 2002 .

[19]  W. C. Johnson,et al.  Circular dichroism of the alkyl amino acids in the vacuum ultraviolet , 1973, Biopolymers.

[20]  M. Abe,et al.  ToF-SIMS analysis of carbonaceous particles in the sample catcher of the Hayabusa spacecraft , 2015, Earth, Planets and Space.

[21]  Anisotropy-Guided Enantiomeric Enhancement in AlanineUsing Far-UV Circularly Polarized Light , 2015, Origins of Life and Evolution of Biospheres.

[22]  Cornelia Meinert,et al.  A new dimension in separation science: comprehensive two-dimensional gas chromatography. , 2012, Angewandte Chemie.

[23]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[24]  Kensei Kobayashi,et al.  Formation of Amino Acids from Possible Interstellar Media by γ-rays and UV Irradiation , 2002 .

[25]  Hirotaka Sawada,et al.  3D mapping by active stereo sensor on sampling mission of asteroid surface , 2017, 2017 IEEE Aerospace Conference.

[26]  J. Mittal,et al.  Photo-induced decarboxylation of aliphatic acids and esters in solution. Dependence upon state of protonation of the carboxyl group , 1973 .

[27]  Andrew Steele,et al.  Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.

[28]  A. Giuditta,et al.  Presence of D‐aspartate in squid axoplasm and in other regions of the cephalopod nervous system , 1978, Journal of neurochemistry.

[29]  T. Nishikawa Analysis of free D-serine in mammals and its biological relevance. , 2011, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[30]  M. Engel,et al.  Distribution and enantiomeric composition of amino acids in the Murchison meteorite , 1982, Nature.

[31]  Jan Hendrik Bredehöft,et al.  Understanding photochirogenesis: solvent effects on circular dichroism and anisotropy spectroscopy. , 2014, Chirality.

[32]  Laurent Nahon,et al.  Photolysis of rac‐Leucine with Circularly Polarized Synchrotron Radiation , 2010, Chemistry & biodiversity.

[33]  A. D’Aniello d-Aspartic acid: An endogenous amino acid with an important neuroendocrine role , 2007, Brain Research Reviews.

[34]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[35]  M. Sephton,et al.  Extraterrestrial Amino Acids , 2010 .

[36]  M. Waldor,et al.  D-Amino Acids Govern Stationary Phase Cell Wall Remodeling in Bacteria , 2009, Science.

[37]  Jeremy Bailey,et al.  Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality , 2001, Origins of life and evolution of the biosphere.

[38]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[39]  E. Okuma,et al.  Distribution of Free D-Amino Acids in Bivalve Mollusks and the Effects of Physiological Conditions on the Levels of D- and L-Alanine in the Tissues of the Hard Clam, Meretrix lusoria , 1998 .

[40]  Martin Quack,et al.  How important is parity violation for molecular and biomolecular chirality? , 2002, Angewandte Chemie.

[41]  E. Scott,et al.  Classification of Meteorites and Their Genetic Relationships , 2014 .

[42]  J. Greenberg,et al.  Ultraviolet Photoprocessing of Interstellar Dust Mantles as a Source of Polycyclic Aromatic Hydrocarbons and Other Conjugated Molecules , 2000, The Astrophysical journal.

[43]  Hirotaka Sawada,et al.  Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu , 2017 .

[44]  A. Burton,et al.  Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. , 2012, Chemical Society reviews.

[45]  Kenso Soai,et al.  Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. , 2005, Journal of the American Chemical Society.

[46]  G. Cody,et al.  The nature, origin and modification of insoluble organic matter in chondrites, the possibly interstellar source of Earth's C and N. , 2017, Chemie der Erde : Beitrage zur chemischen Mineralogie, Petrographie und Geologie.

[47]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[48]  Wolfgang Lindner,et al.  Comprehensive analysis of branched aliphatic D-amino acids in mammals using an integrated multi-loop two-dimensional column-switching high-performance liquid chromatographic system combining reversed-phase and enantioselective columns. , 2007, Journal of chromatography. A.

[49]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[50]  Y. Kera,et al.  d-Aspartate Oxidase and Free Acidic d-Amino Acids in Fish Tissues , 1998 .

[51]  J. Crovisier,et al.  Remote Observations of the Composition of Cometary Volatiles , 1999 .

[52]  A. Giuditta,et al.  IDENTIFICATION OF D‐ASPARTIC ACID IN THE BRAIN OF OCTOPUS VULGARIS LAM , 1977, Journal of neurochemistry.

[53]  Kazumichi Nakagawa,et al.  Natural Circular Dichroism Spectra of Alanine and Valine Films in Vacuum Ultraviolet Region , 2009 .

[54]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[55]  W. Bonner,et al.  Supernovae and life , 1983, Nature.

[56]  H. Naraoka,et al.  A new family of extraterrestrial amino acids in the Murchison meteorite , 2017, Scientific Reports.

[57]  Y. Takano,et al.  Abiotic synthesis of high-molecular-weight organics from an inorganic gas mixture of carbon monoxide, ammonia, and water by 3 MeV proton irradiation , 2004 .

[58]  T. Ahrens,et al.  Shock properties of H2O ice , 2005 .

[59]  Laurent Nahon,et al.  Photonenergy-controlled symmetry breaking with circularly polarized light. , 2014, Angewandte Chemie.

[60]  Geoffrey A. Blake,et al.  Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O) , 2016, Science.

[61]  I. Powis,et al.  VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers. , 2014, The journal of physical chemistry. A.

[62]  Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy) , 2015, Science Advances.

[63]  Ralf I. Kaiser,et al.  A Combined Experimental and Theoretical Study on the Formation of the Amino Acid Glycine (NH2CH2COOH) and Its Isomer (CH3NHCOOH) in Extraterrestrial Ices , 2005 .

[64]  J. Greenberg Cosmic dust and our origins , 2002 .

[65]  Geneviève Auger,et al.  A Detailed Study of the Amino Acids Produced from the Vacuum UV Irradiation of Interstellar Ice Analogs , 2008, Origins of Life and Evolution of Biospheres.

[66]  J. Bredehöft,et al.  Photochirogenesis: photochemical models on the absolute asymmetric formation of amino acids in interstellar space. , 2011, Physics of life reviews.

[67]  Kenso Soai,et al.  Asymmetric Autocatalysis Triggered by Carbon Isotope (13C/12C) Chirality , 2009, Science.

[68]  J Koike,et al.  Formation of amino acid precursors in cometary ice environments by cosmic radiation. , 1995, Advances in space research : the official journal of the Committee on Space Research.

[69]  D. Armstrong,et al.  d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study. , 2017, ACS chemical neuroscience.

[70]  D. Mazori,et al.  Enantioselective synthesis and enantiomeric amplification of amino acids under prebiotic conditions. , 2008, Organic letters.

[71]  Yoshihisa Inoue,et al.  The pH dependence of the anisotropy factors of essential amino acids , 2002 .

[72]  Gianfranco Visentin,et al.  Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.

[73]  J. Sweedler,et al.  d-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems , 2012, Amino Acids.

[74]  S. Pizzarello,et al.  Amino Acid Enantiomer Excesses in Meteorites: Origin and Significance , 1999 .

[75]  S. Tachibana,et al.  60Fe in Chondrites: Debris from a Nearby Supernova in the Early Solar System? , 2006 .

[76]  Donald E. Brownlee,et al.  The Stardust Mission: Analyzing Samples from the Edge of the Solar System , 2014 .

[77]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[78]  A. Brack,et al.  Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.

[79]  T. Sekine,et al.  Racemization of Valine by Impact-Induced Heating , 2018, Origins of Life and Evolution of Biospheres.

[80]  S. Sandford,et al.  Complex organics in laboratory simulations of interstellar/cometary ices. , 1997, Advances in space research : the official journal of the Committee on Space Research.

[81]  Laurent Nahon,et al.  The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs , 2006 .

[82]  Pascal Rosenblatt,et al.  On the Impact Origin of Phobos and Deimos. I. Thermodynamic and Physical Aspects , 2017, 1707.06282.

[83]  E. Okuma,et al.  Role of free D- and L-alanine in the Japanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstream spawning migration , 1999 .

[84]  M. Burchell,et al.  Shock synthesis of amino acids from impacting cometary and icy planet surface analogues , 2013 .

[85]  Pascale Ehrenfreund,et al.  Indigenous amino acids in primitive CR meteorites , 2007 .

[86]  Ryo Kandori,et al.  NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V , 2013, 1302.2295.

[87]  E. Peterson,et al.  Modification of amino acids at shock pressures of 3.5 to 32 GPa. , 1997, Geochimica et cosmochimica acta.

[88]  Laurent Nahon,et al.  Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. , 2005, Angewandte Chemie.

[89]  W. Schutte Production of organic molecules in interstellar ices , 2002 .

[90]  Jens Biele,et al.  Rosetta Lander - Landing and operations on comet 67P/Churyumov-Gerasimenko , 2016 .

[91]  Circular polarization by scattering from spheroidal dust grains , 2000 .

[92]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[93]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[94]  K. Mimura,et al.  Shock-induced pyrolysis of amino acids at ultra high pressures ranged from 3.2 to 35.3GPa , 2014 .

[95]  H. Onuki,et al.  Mechanism of pH-dependent photolysis of aliphatic amino acids and enantiomeric enrichment of racemic leucine by circularly polarized light. , 2001, Organic letters.

[96]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[97]  K. Awazu,et al.  First absolute asymmetric synthesis with circularly polarized synchrotron radiation in the vacuum ultraviolet region: direct photoderacemization of (E)-cyclooctene , 1996 .

[98]  Amitesh Maiti,et al.  Synthesis of glycine-containing complexes in impacts of comets on early Earth. , 2010, Nature chemistry.

[99]  Jan Hendrik Bredehöft,et al.  Identification of diamino acids in the Murchison meteorite. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[100]  I. Kaneko,et al.  Suppression of Mitochondrial Succinate Dehydrogenase, a Primary Target of β‐Amyloid, and Its Derivative Racemized at Ser Residue , 1995, Journal of neurochemistry.

[101]  C. Viedma Total Chiral Symmetry Breaking during Crystallization: Who needs a , 2004, cond-mat/0407479.

[102]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[103]  L. Leshin,et al.  The Cradle of the Solar System , 2004, Science.

[104]  G. Fisher,et al.  D‐aspartic acid in the nervous system of Aplysia limacina: Possible role in neurotransmission , 2006, Journal of cellular physiology.

[105]  A. Giuditta,et al.  Presence of d-alanine in crustacean muscle and hepatopancreas , 1980 .

[106]  A. J. Macdermott,et al.  Electroweak Parity-Violating Energy Shifts of Amino Acids: The “Conformation Problem” , 2009, Origins of Life and Evolution of Biospheres.

[107]  Junichiro Kawaguchi,et al.  Hayabusa‐returned sample curation in the Planetary Material Sample Curation Facility of JAXA , 2014 .

[108]  Yoshinori Takano,et al.  Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios , 2016, Earth, Planets and Space.

[109]  T. Nishikawa Metabolism and functional roles of endogenous D-serine in mammalian brains. , 2005, Biological & pharmaceutical bulletin.

[110]  K. Mimura,et al.  Glycine oligomerization up to triglycine by shock experiments simulating comet impacts , 2014 .

[111]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[112]  H. Mori,et al.  Serine Racemase Knockout Mice , 2010, Chemistry & biodiversity.

[113]  T. Hara,et al.  Helicity switching of circularly polarized undulator radiation by local orbit bumps , 2003 .

[114]  K. Yagi-Watanabe,et al.  Chiroptical study of α-aliphatic amino acid films in the vacuum ultraviolet region. , 2010, The journal of physical chemistry. A.

[115]  Takahashi Junichi,et al.  Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light , 2007 .

[116]  H. Homma,et al.  D-Aspartate--an important bioactive substance in mammals: a review from an analytical and biological point of view. , 2011, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[117]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.

[118]  K. Hamase,et al.  Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities. , 2015, Journal of pharmaceutical and biomedical analysis.

[119]  D. Lis,et al.  New molecules found in comet C/1995 O1 (Hale-Bopp) Investigating the link between cometary and interstellar material , 2000 .

[120]  A. Neidle,et al.  Developmental changes in free D-aspartic acid in the chicken embryo and in the neonatal rat. , 1990, Life sciences.

[121]  Y. Baraud,et al.  Anisotropy spectra of amino acids. , 2012, Angewandte Chemie.

[122]  M. Sephton,et al.  Amino acid analyses of type 3 chondrites Colony, Ornans, Chainpur, and Bishunpur , 2012 .

[123]  T. Ueda,et al.  Two-Dimensional HPLC-MS/MS Determination of Multiple D-Amino Acid Residues in the Proteins Stored Under Various pH Conditions , 2017 .

[124]  Kenso Soai,et al.  Asymmetric autocatalysis induced by meteoritic amino acids with hydrogen isotope chirality , 2009, Chemical communications.

[125]  E. Okuma,et al.  Simultaneous determination of D- and L-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. , 1994, Journal of chromatography. B, Biomedical applications.

[126]  Laurent Nahon,et al.  NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT , 2011 .

[127]  W. Kuhn,et al.  Photochemische Erzeugung optisch aktiver Stoffe , 2005, Naturwissenschaften.

[128]  Junichiro Kawaguchi,et al.  Oxygen Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission , 2011, Science.

[129]  A. Wierzbicki,et al.  Formation of chiral morphologies through selective binding of amino acids to calcite surface steps , 2001, Nature.

[130]  Y. Izumi,et al.  Characteristic oxygen K-edge circular dichroism spectra of amino acid films by improved measurement technique. , 2013, The Journal of chemical physics.

[131]  T. Hashimoto,et al.  Incipient Space Weathering Observed on the Surface of Itokawa Dust Particles , 2011, Science.

[132]  Kenso Soai,et al.  Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule , 1995, Nature.

[133]  The molecular universe , 2013 .

[134]  Hirotaka Sawada,et al.  Hayabusa2 Sampler: Collection of Asteroidal Surface Material , 2017 .

[135]  M. Yoshikawa,et al.  Preliminary organic compound analysis of microparticles returned from Asteroid 25143 Itokawa by the Hayabusa mission , 2012 .

[136]  Y. Takano,et al.  DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL , 2016 .

[137]  Laurence D. Barron,et al.  True and false chirality and absolute asymmetric synthesis , 1986 .

[138]  B. Nordén,et al.  Was photoresolution of amino acids the origin of optical activity in life? , 1977, Nature.

[139]  K. Hamase,et al.  Enantioselective Determination of Extraterrestrial Amino Acids Using a Two-Dimensional Chiral High-Performance Liquid Chromatographic System , 2014 .

[140]  Y. Tsuda,et al.  Hayabusa2 Mission Overview , 2017 .

[141]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite: II. Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids. , 1985, Geochimica et cosmochimica acta.

[142]  Aaron S. Burton,et al.  Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories , 2016, ACS central science.

[143]  Toru Yamada,et al.  Vacuum ultraviolet circular dichroism spectroscopy using an ac-modulated polarizing undulator , 2005 .

[144]  G. Lente The effect of parity violation on kinetic models of enantioselective autocatalysis. , 2007, Physical chemistry chemical physics : PCCP.

[145]  A. Burton,et al.  Amino acid analyses of R and CK chondrites , 2015 .

[146]  Ryo Kandori,et al.  Extended High Circular Polarization in the Orion Massive Star Forming Region: Implications for the Origin of Homochirality in the Solar System , 2010, Origins of Life and Evolution of Biospheres.

[147]  W. Bonner,et al.  Parity violation and the evolution of biomolecular homochirality. , 2000, Chirality.

[148]  T. Owen,et al.  Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[149]  J. Crovisier,et al.  Remote Observations of the Composition of Cometary Volatiles , 1999 .

[150]  J. Corrigan D-amino acids in animals. , 1969, Science.

[151]  Hideo Onuki,et al.  Elliptically polarized synchrotron radiation source with crossed and retarded magnetic fields , 1986 .

[152]  Zita Martins,et al.  The amino acid and hydrocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite , 2015 .

[153]  H. Kuninaka,et al.  Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3 , 2014 .

[154]  Saša Bajt,et al.  Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2 , 2010 .

[155]  P. Chieffi,et al.  D‐aspartate modulates transcriptional activity in Harderian gland of frog, Rana esculenta: Morphological and molecular evidence , 2005, Journal of cellular physiology.

[156]  M. Abe,et al.  Sequential analysis of carbonaceous materials in Hayabusa-returned samples for the determination of their origin , 2014, Earth, Planets and Space.

[157]  S. Sandford,et al.  X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles , 2014, Earth, Planets and Space.

[158]  A. Burton,et al.  Compound‐specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways , 2012 .

[159]  O. Buchardt Photochemistry with Circularly Polarized Light , 1974 .

[160]  Iwan P. Williams,et al.  The velocity distributions of periodic comets and stream meteoroids , 2000 .

[161]  H. Homma,et al.  D-Glutamate is metabolized in the heart mitochondria , 2017, Scientific Reports.

[162]  T. Filley,et al.  Selective adsorption of l- and d-amino acids on calcite: Implications for biochemical homochirality , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[163]  K. Soai,et al.  d- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound , 1999 .

[164]  Andro C. Rios,et al.  Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites , 2016, Proceedings of the National Academy of Sciences.

[165]  Junichiro Kawaguchi,et al.  Irradiation History of Itokawa Regolith Material Deduced from Noble Gases in the Hayabusa Samples , 2011, Science.

[166]  Daniel P. Glavin,et al.  The effects of parent body processes on amino acids in carbonaceous chondrites , 2010 .

[167]  T. Ahrens,et al.  The fate of organic matter during planetary accretion: Preliminary studies of the organic chemistry of experimentally shocked murchison meteorite , 1991, Origins of life and evolution of the biosphere.

[168]  K. Hamase,et al.  Enantioselective Two-Dimensional High-Performance Liquid Chromatographic Determination of Amino Acids; Analysis and Physiological Significance of D-Amino Acids in Mammals , 2014 .

[169]  Laurent Nahon,et al.  Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs , 2016, Science.

[170]  U. Meierhenrich,et al.  Quantitative enantioseparation of amino acids by comprehensive two-dimensional gas chromatography applied to non-terrestrial samples. , 2016, Journal of chromatography. A.

[171]  Scott A. Sandford,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002, Nature.

[172]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[173]  James H. Doty,et al.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography‐time of flight‐mass spectrometry , 2006 .

[174]  Junichiro Kawaguchi,et al.  Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites , 2011, Science.

[175]  P. Schwerdtfeger,et al.  D- or L-alanine: that is the question. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[176]  K. Kvenvolden,et al.  Stereoisomers of isovaline in the Murchison meteorite , 1975 .

[177]  Jacques Crovisier,et al.  The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy , 2004 .

[178]  Alec Moradpour,et al.  Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity , 1974 .

[179]  H. Rakugi,et al.  Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease , 2016, Scientific Reports.

[180]  Laurent Nahon,et al.  Enantiomeric separation of complex organic molecules produced from irradiation of interstellar/circumstellar ice analogs , 2007 .

[181]  John Robert Brucato,et al.  The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments , 2017, Astrobiology.

[182]  J. Oro,et al.  On the reported optical activity of amino acids in the Murchison meteorite , 1983, Nature.

[183]  Y. Takano,et al.  Deuterium Fractionation upon the Formation of Hexamethylenetetramines through Photochemical Reactions of Interstellar Ice Analogs Containing Deuterated Methanol Isotopologues , 2017 .

[184]  E. Beshore,et al.  OSIRIS-REx Contamination Control Strategy and Implementation , 2017, Space science reviews.

[185]  A. Burton,et al.  A propensity for n‐ω‐amino acids in thermally altered Antarctic meteorites , 2012 .

[186]  K. Kvenvolden,et al.  Nonprotein amino acids in the murchison meteorite. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[187]  P. Conrad,et al.  The Mars Science Laboratory Organic Check Material , 2012 .

[188]  I. Powis,et al.  Chiral Asymmetry in the Photoionization of Gas-Phase Amino-Acid Alanine at Lyman-α Radiation Wavelength , 2013 .

[189]  Laurent Nahon,et al.  Aldehydes and sugars from evolved precometary ice analogs: Importance of ices in astrochemical and prebiotic evolution , 2015, Proceedings of the National Academy of Sciences.

[190]  P. Ehrenfreund,et al.  Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites , 2007 .

[191]  M. M. Di Fiore,et al.  Enhancement of aromatase activity by D-aspartic acid in the ovary of the lizard Podarcis s. sicula. , 2001, Reproduction.

[192]  W. Irvine The Composition of Interstellar Molecular Clouds , 1999, Space science reviews.

[193]  T. Larsen,et al.  Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies , 2017 .

[194]  A. C. Evans,et al.  Anisotropy spectra for enantiomeric differentiation of biomolecular building blocks. , 2013, Topics in current chemistry.

[195]  The Ice Survey Opportunity of ISO , 2005 .

[196]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[197]  Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites , 2015 .

[198]  K. Yagi-Watanabe,et al.  First observation of natural circular dichroism spectra in the extreme ultraviolet region using a polarizing undulator-based optical system and its polarization characteristics. , 2009, Journal of synchrotron radiation.

[199]  W. Bonner Enantiomeric markers in the quantitative gas chromatographic analysis of optical isomers. Application to the estimation of amino acid degradation. , 1973, Journal of chromatographic science.

[200]  Simon S. Woo,et al.  Viedma Ripening of Conglomerate Crystals of Achiral Molecules Monitored Using Solid-State Circular Dichroism , 2014 .

[201]  W. Bonner,et al.  Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. , 1977, Journal of the American Chemical Society.

[202]  N. Fujii,et al.  D-Amino acids in aged proteins: analysis and biological relevance. , 2011, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[203]  Michael E. Zolensky,et al.  Nonracemic isovaline in the Murchison meteorite : Chiral distribution and mineral association , 2003 .

[204]  Yoshihisa Inoue Asymmetric photochemical reactions in solution , 1992 .

[205]  Werner Kuhn,et al.  The physical significance of optical rotatory power , 2022 .