Bacterial biodegradation of polycyclic aromatic hydrocarbons (PAH) and potential effects of surfactants on PAH bioavailability

The purposes of this project were to evaluate whether indigenous microorganisms from polycyclic aromatic hydrocarbons (PAH)-contaminated soils produce surfactants (biosurfactants) as a means of enhancing the bioavailability of PAH; to improve the understanding of the general physiology of a diverse group of PAH-degrading bacteria; and to study in general how surfactants influence the biodegradation of hydrophobic chemicals.

[1]  A. E. Greenberg,et al.  Standard Methods for the Examination of Water and Wastewater seventh edition , 2013 .

[2]  W. Shiu,et al.  Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals , 2006 .

[3]  A. Breure,et al.  Effect of micro-organisms on the bioavailability and biodegradation of crystalline naphthalene , 1993, Applied Microbiology and Biotechnology.

[4]  O. Ogunseitan,et al.  Effect of 2-hydroxybenzoate on the rate of naphthalene mineralization in soil , 1993, Applied Microbiology and Biotechnology.

[5]  E. Ron,et al.  Petroleum bioremediation — a multiphase problem , 1992, Biodegradation.

[6]  M. Alexander,et al.  Factors affecting the microbial degradation of phenanthrene in soil , 1991, Applied Microbiology and Biotechnology.

[7]  Jürgen Klein,et al.  Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures , 2004, Applied Microbiology and Biotechnology.

[8]  S. Grimberg,et al.  Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants. , 1995, Environmental science & technology.

[9]  M. D. Aitken,et al.  Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads , 1995, Applied and environmental microbiology.

[10]  Joseph D. Rouse,et al.  Influence of surfactants on microbial degradation of organic compounds , 1994 .

[11]  S. Grimberg,et al.  The influence of a surfactant on the rate of phenanthrene mass transfer into water , 1994 .

[12]  W. Finnerty Biosurfactants in environmental biotechnology , 1994 .

[13]  T. Iida,et al.  Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82 , 1994, Journal of bacteriology.

[14]  M. Shiaris,et al.  Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816 , 1994, Journal of bacteriology.

[15]  R. Rosselló-Móra,et al.  Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains , 1994, Applied and environmental microbiology.

[16]  Richard G. Luthy,et al.  Surfactant Solubilization of Organic Compounds in Soil/Aqueous Systems , 1994 .

[17]  R. Luthy,et al.  Experimental Data and Modeling for Surfactant Micelles, HOCs, and Soil , 1994 .

[18]  R. Hinchee,et al.  Applied biotechnology for site remediation 2(3) , 1993 .

[19]  J. Park,et al.  Partitioning of three nonionic organic compounds between adsorbed surfactants, micelles, and water , 1993 .

[20]  P. Fedorak,et al.  Transformations of methyldibenzothiophenes by three Pseudomonas isolates , 1993 .

[21]  A. Boronin,et al.  Growth and plasmid-encoded naphthalene catabolism of Pseudomonas putida in batch culture. , 1993, FEMS microbiology letters.

[22]  Richard Martel,et al.  Phase Diagrams to Optimize Surfactant Solutions for Oil and DNAPL Recovery in Aquifers , 1993 .

[23]  S. Boyd,et al.  Sorption of nonionic organic compounds in soil-water systems containing petroleum sulfonate-oil surfactants , 1993 .

[24]  D. Abramowicz,et al.  Factors influencing the rate of polychlorinated biphenyls dechlorination in Hudson River sediments , 1993 .

[25]  A. Tiehm,et al.  Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp , 1993, Applied and environmental microbiology.

[26]  G. Sayler,et al.  Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene , 1993, Applied and environmental microbiology.

[27]  D. Sabatini,et al.  Minimizing surfactant losses using twin-head anionic surfactants in subsurface remediation , 1993 .

[28]  Microbial oxidation of dimethylnaphthalene isomers , 1993, Applied and environmental microbiology.

[29]  P. H. Pritchard,et al.  Strategy using bioreactors and specially selected microorganisms for bioremediation of groundwater contaminated with creosote and pentachlorophenol , 1993 .

[30]  E. R. Christensen,et al.  Sources of polycyclic aromatic hydrocarbons to Lake Michigan determined from sedimentary records , 1993 .

[31]  K. Jones,et al.  Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. , 1993, Environmental pollution.

[32]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[33]  Jeffrey H. Harwell,et al.  Surfactants and subsurface remediation , 1992 .

[34]  M. A. Anderson Influence of surfactants on vapor-liquid partitioning , 1992 .

[35]  C. Grady,et al.  Application of respirometric biodegradability testing protocol to slightly soluble organic compounds , 1992 .

[36]  G. Sayler,et al.  Scientific foundations of bioremediation: Current status and future needs , 1992 .

[37]  M. Alexander,et al.  Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of aquifer sands and soil slurries , 1992 .

[38]  J. Bayona,et al.  Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products , 1992, Applied and environmental microbiology.

[39]  A. Bogardt,et al.  Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites , 1992, Applied and environmental microbiology.

[40]  S. Boyd,et al.  Differential bioavailability of soil-sorbed naphthalene to two bacterial species , 1992, Applied and environmental microbiology.

[41]  G. Georgiou,et al.  Surface–Active Compounds from Microorganisms , 1992, Bio/Technology.

[42]  B. Witholt,et al.  Pseudomonas: molecular biology and biotechnology. , 1992 .

[43]  M. Alexander ES&T Research Needs , 1991 .

[44]  D. Warshawsky,et al.  Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils , 1991, Applied and environmental microbiology.

[45]  L. Katz,et al.  Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport , 1991 .

[46]  T. Gibson,et al.  Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyl from sandy material , 1991 .

[47]  J. Rosenfeld,et al.  Ground Water Contamination at Wood Treatment Facilities , 1991 .

[48]  Richard G. Luthy,et al.  SOLUBILIZATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN MICELLAR NONIONIC SURFACTANT SOLUTIONS , 1991 .

[49]  M Rosenberg,et al.  Basic and applied aspects of microbial adhesion at the hydrocarbon:water interface. , 1991, Critical reviews in microbiology.

[50]  T. Gibson,et al.  Selection of Surfactants for the Removal of Petroleum Products from Shallow Sandy Aquifers , 1990 .

[51]  D. D. Toro,et al.  A model for anionic surfactant sorption , 1990 .

[52]  R. Sims,et al.  Transformation of PAHs in soil systems. , 1990 .

[53]  J. Foght,et al.  Mineralization of [14C]hexadecane and [14C]phenanthrene in crude oil: specificity among bacterial isolates. , 1990, Canadian journal of microbiology.

[54]  C. Cerniglia,et al.  Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem , 1989, Applied and environmental microbiology.

[55]  Ronald C. Sims,et al.  Bioremediation of Contaminated Surface Soils , 1989 .

[56]  M. Brennan,et al.  Two strategies for PCB soil remediation: Biodegradation and surfactant extraction , 1989 .

[57]  C. Cerniglia,et al.  Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene , 1988, Applied and environmental microbiology.

[58]  W. Franklin,et al.  Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium , 1988, Applied and environmental microbiology.

[59]  C. Cerniglia,et al.  Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field , 1988, Applied and environmental microbiology.

[60]  M. Alexander,et al.  Role of Dissolution Rate and Solubility in Biodegradation of Aromatic Compounds , 1987, Applied and environmental microbiology.

[61]  G. Eiceman,et al.  Depth profiles for hydrocarbons and polycyclic aromatic hydrocarbons in soil beneath waste disposal pits from natural gas production. , 1986, Environmental science & technology.

[62]  Jeanette G. Grasselli,et al.  CRC Handbook of Data on Organic Compounds , 1985 .

[63]  M. Singer,et al.  Microbial metabolism of straight-chain and branched alkanes , 1984 .

[64]  C. Cerniglia Microbial metabolism of polycyclic aromatic hydrocarbons. , 1984, Advances in applied microbiology.

[65]  Alexander T. Florence,et al.  Surfactant Systems: Their chemistry, pharmacy and biology , 1983 .

[66]  E. A. Barnsley Bacterial Oxidation of Naphthalene and Phenanthrene , 1983, Journal of bacteriology.

[67]  H. Kiyohara,et al.  The Catabolism of Phenanthrene and Naphthalene by Bacteria , 1978 .

[68]  D. Gibson,et al.  Bacterial cis-dihydrodiol dehydrogenases: comparison of physicochemical and immunological protperties , 1976, Journal of bacteriology.

[69]  M. Blumer Polycyclic aromatic compounds in nature. , 1976, Scientific American.

[70]  P. Williams,et al.  Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: regulation of tangential pathways , 1975, Journal of bacteriology.

[71]  J. Rees,et al.  Some relations between dissolution rates and physical parameters of a drug in aqueous micellar solutions of a non‐ionic surfactant , 1975, The Journal of pharmacy and pharmacology.

[72]  R S Wodzinski,et al.  Physical state of phenanthrene for utilization by bacteria. , 1974, Applied microbiology.

[73]  W. Higuchi Diffusional Models Useful in Biopharmaceutics: Drug Release Rate Processes , 1967 .

[74]  R. T. Wright,et al.  THE UPTAKE OF ORGANIC SOLUTES IN LAKE WATER1 , 1965 .

[75]  W. Higuchi EFFECTS OF INTERACTING COLLOIDS ON TRANSPORT RATES. , 1964, Journal of pharmaceutical sciences.

[76]  F. Eirich,et al.  MICELLAR STRUCTURE OF NON-IONIC DETERGENTS1 , 1962 .

[77]  I. Wender,et al.  METHYLNAPHTHALENE OXIDATIONS BY PSEUDOMONADS , 1959, Journal of bacteriology.