Parameter estimation for linear alpha-stable processes

Although alpha-stable processes have infinite variance, one can define and consistently estimate the normalized correlations and cumulants of linear processes with stable innovations. Hence, conventional techniques can be used to estimate the parameters of nonminimum phase alpha-stable processes.

[1]  W. Steiger,et al.  Regression and autoregression with infinite variance , 1974, Advances in Applied Probability.

[2]  V. Yohai,et al.  Asymptotic Behavior of Least-Squares Estimates for Autoregressive Processes with Infinite Variances , 1977 .

[3]  Richard A. Davis,et al.  Limit Theory for the Sample Covariance and Correlation Functions of Moving Averages , 1986 .

[4]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[5]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[6]  C. Klüppelberg,et al.  PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS , 1995 .

[7]  Chrysostomos L. Nikias,et al.  Parameter estimation and blind channel identification in impulsive signal environments , 1995, IEEE Trans. Signal Process..

[8]  C. L. Nikias,et al.  Exact maximum likelihood identification of MA(1) systems driven by Cauchy noise of unknown dispersion , 1995, IEEE Signal Processing Letters.

[9]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[10]  Brian M. Sadler,et al.  TDE, DOA and related parameter estimation problems in impulsive noise , 1997, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics.

[11]  Ananthram Swami,et al.  On some parameter estimation problems in alpha-stable processes , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.