Blur kernel estimation via salient edges and nonlocal regularization

Blind image deblurring is a severely ill-posed inverse problem. To obtain a high quality latent image from a single blurred one, effective regularizations are required. In this paper, we propose a nonlocal regularization to improve blur kernel estimation. Under convolution operation, even similar patches could result in the quite different values. However, if the estimated kernel is correct, the nonlocal similar patches weighted by that kernel may result in the similar value by convolution. Therefore, the weighted nonlocal patches can improve the kernel estimation. We extract the nonlocal patches in terms of the weighted similarity by the kernel and then use them for regularization of the kernel estimation. Since the nonlocal regularization is a data-authentic prior, our approach not only mitigates the ill-posedness but also imposes the effective prior to kernel estimation. Experimental results show that our approach outperforms conventional blind deblurring algorithms.

[1]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[2]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[4]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[5]  Daniele Perrone,et al.  Total Variation Blind Deconvolution: The Devil Is in the Details , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Thomas S. Huang,et al.  Sparse representation based blind image deblurring , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[7]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[8]  XuYi,et al.  Image smoothing via L0 gradient minimization , 2011 .

[9]  Wotao Yin,et al.  Compressed Sensing via Iterative Support Detection , 2009, ArXiv.

[10]  Sylvain Paris,et al.  Blur kernel estimation using the radon transform , 2011, CVPR 2011.

[11]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[12]  Ming-Hsuan Yang,et al.  Single image deblurring with adaptive dictionary learning , 2010, 2010 IEEE International Conference on Image Processing.

[13]  Ming-Hsuan Yang,et al.  Good Regions to Deblur , 2012, ECCV.

[14]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[15]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Jian-Feng Cai,et al.  Framelet-Based Blind Motion Deblurring From a Single Image , 2012, IEEE Transactions on Image Processing.

[17]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[18]  Raanan Fattal,et al.  Blur-Kernel Estimation from Spectral Irregularities , 2012, ECCV.

[19]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, SIGGRAPH 2008.

[20]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[21]  Sylvain Paris,et al.  Handling Noise in Single Image Deblurring Using Directional Filters , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Zhixun Su,et al.  Kernel estimation from salient structure for robust motion deblurring , 2012, Signal Process. Image Commun..

[23]  Zhixun Su,et al.  Fast $\ell ^{0}$-Regularized Kernel Estimation for Robust Motion Deblurring , 2013, IEEE Signal Processing Letters.

[24]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[25]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[26]  Guili Liu,et al.  Motion blur kernel estimation via salient edges and low rank prior , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).