Stabilization of linear dynamical systems with scalar quantizers under communication constraints

This paper addresses a feedback stabilization problem for linear time-invariant dynamical systems where the feedback control loop is closed over a noiseless time-variant and rate-limited communication link. In contrast to the previous work, we assume a set of scalar quantizers and propose a method for stabilizing the system at reduced data rates.

[1]  Gunther Reissig,et al.  Computing Abstractions of Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[2]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[3]  S. Elaydi An introduction to difference equations , 1995 .

[4]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[5]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[6]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[9]  Anant Sahai,et al.  Anytime information theory , 2001 .

[10]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[11]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[12]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[13]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.