NONPARAMETRIC ESTIMATION OF COMPOSITE FUNCTIONS

We study the problem of nonparametric estimation of a multivariate function g: R d → R that can be represented as a composition of two unknown smooth functions f: R → R and G: R d → R. We suppose that f and G belong to known smoothness classes of functions, with smoothness γ and β, respectively. We obtain the full description of minimax rates of estimation of g in terms of γ and β, and propose rate-optimal estimators for the sup-norm loss. For the construction of such estimators, we first prove an approximation result for composite functions that may have an independent interest, and then a result on adaptation to the local structure. Interestingly, the construction of rate-optimal estimators for composite functions (with given, fixed smoothness) needs adaptation, but not in the traditional sense: it is now adaptation to the local structure. We prove that composition models generate only two types of local structures: the local single-index model and the local model with roughness isolated to a single dimension (i.e., a model containing elements of both additive and single-index structure). We also find the zones of (γ, β) where no local structure is generated, as well as the zones where the composition modeling leads to faster rates, as compared to the classical nonparametric rates that depend only to the overall smoothness of g.

[1]  O. Lepski,et al.  Hypothesis Testing under Composite Functions Alternative , 2008 .

[2]  Markus Reiss,et al.  Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.

[3]  O. Lepskii,et al.  On problems of adaptive estimation in white Gaussian noise , 1992 .

[4]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[5]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[6]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[7]  G. Yin,et al.  Topics in Stochastic Analysis and Nonparametric Estimation , 2008 .

[8]  V. Tikhomirov On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of one Variable and Addition , 1991 .

[9]  D. Picard,et al.  Non Linear Estimation in Anisotropic Multiindex Denoising , 1999 .

[10]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[11]  A. Juditsky,et al.  Direct estimation of the index coefficient in a single-index model , 2001 .

[12]  E. Mammen,et al.  Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .

[13]  D. Politis,et al.  Statistical Estimation , 2022 .

[14]  O. Lepskii Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .

[15]  David A. Sprecher,et al.  An improvement in the superposition theorem of Kolmogorov , 1972 .

[16]  Karine Bertin,et al.  Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes , 2004 .

[17]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[18]  O. Lepski,et al.  Structural adaptation via Lp-norm oracle inequalities , 2007, 0704.2492.

[19]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[20]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[21]  G. Lecu'e,et al.  Optimal rates and adaptation in the single-index model using aggregation , 2007, math/0703706.

[22]  G. Kerkyacharian,et al.  Nonlinear estimation in anisotropic multi-index denoising , 2001 .

[23]  Alexander Goldenshluger,et al.  Structural adaptation via $$\mathbb{L}_p$$ -norm oracle inequalities , 2009 .

[24]  B. M. Fulk MATH , 1992 .

[25]  A. Tsybakov,et al.  Introduction à l'estimation non-paramétrique , 2003 .

[26]  Estimation asymptotiquement exacte en norme sup de fonctions multidimensionnelles , 2004 .

[27]  V. Spokoiny,et al.  Optimal pointwise adaptive methods in nonparametric estimation , 1997 .

[28]  Joel L. Horowitz,et al.  Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions , 2007, 0803.2999.

[29]  D. Picard,et al.  Nonlinear Estimation in Anisotropic Multi-Index Denoising. Sparse Case , 2008 .

[30]  D. Donoho Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery , 1994 .