Bio-based production of the platform chemical 1,5-diaminopentane

In the rising era of bio-economy, the five carbon compound 1,5-diaminopentane receives increasing interest as platform chemical, especially as innovative building block for bio-based polymers. The vital interest in bio-based supply of 1,5-diaminopentane has strongly stimulated research on the development of engineered producer strains. Based on the state-of-art knowledge on the pathways and reactions linked to microbial 1,5-diaminopentane metabolism, the review covers novel systems metabolic engineering approaches towards hyper-producing cell factories of Corynebacterium glutamicum or Escherichia coli. This is integrated into the whole value chain from renewable feedstocks via 1,5-diaminopentane to innovative biopolymers involving bioprocess engineering considerations for economic supply.

[1]  Christoph Wittmann,et al.  Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. , 2011, Biotechnology journal.

[2]  Christoph Wittmann,et al.  Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties , 2009, BMC Systems Biology.

[3]  Y. Kamio,et al.  Gene Cloning and Molecular Characterization of Lysine Decarboxylase from Selenomonas ruminantiumDelineate Its Evolutionary Relationship to Ornithine Decarboxylases from Eukaryotes , 2000, Journal of bacteriology.

[4]  Sang Yup Lee,et al.  Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. , 2009, Journal of microbiology and biotechnology.

[5]  Ludwig Brieger,et al.  Weitere Untersuchungen Uber Ptomaine , 2009 .

[6]  B. Bathe,et al.  l -Lysine Production , 2005 .

[7]  C. Wittmann,et al.  Identification and Elimination of the Competing N-Acetyldiaminopentane Pathway for Improved Production of Diaminopentane by Corynebacterium glutamicum , 2010, Applied and Environmental Microbiology.

[8]  Masayuki Inui,et al.  An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain , 2008, Applied Microbiology and Biotechnology.

[9]  J. Slonczewski,et al.  Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH , 1992, Journal of bacteriology.

[10]  H Tabor,et al.  Polyamines in microorganisms. , 1985, Microbiological reviews.

[11]  D S Ogunniyi,et al.  Castor oil: a vital industrial raw material. , 2006, Bioresource technology.

[12]  Akira Ishihama,et al.  Two different modes of transcription repression of the Escherichia coli acetate operon by IclR , 2002, Molecular microbiology.

[13]  Akihiko Kondo,et al.  Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase , 2009, Applied Microbiology and Biotechnology.

[14]  Christoph Wittmann,et al.  Fermentative Herstellung von Bernsteinsäure mit Basfia succiniciproducens DD1 in Serumflaschen , 2010 .

[15]  M. Shumkov,et al.  Role of polyamines in formation of multiple antibiotic resistance of Escherichia coli under stress conditions , 2006, Biochemistry (Moscow).

[16]  P. Cossart,et al.  Nucleotide sequence of the thrA gene of Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Sahm,et al.  Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum , 1991, Molecular microbiology.

[18]  D. Lane,et al.  Expression of the second lysine decarboxylase gene of Escherichia coli. , 1998, Microbiology.

[19]  C. Wandrey,et al.  Reaction engineering analysis of L‐lysine transport by Corynebacterium glutamicum , 2000, Biotechnology and bioengineering.

[20]  G. Bennett,et al.  Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH , 1992, Journal of bacteriology.

[21]  S. Lee,et al.  Towards systems metabolic engineering of microorganisms for amino acid production. , 2008, Current opinion in biotechnology.

[22]  P. Ferrara,et al.  Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. , 1983, The Journal of biological chemistry.

[23]  M. Hatsu,et al.  Metabolic Engineering of Corynebacterium glutamicum for Cadaverine Fermentation , 2007, Bioscience, biotechnology, and biochemistry.

[24]  Jeong K. Lee,et al.  Cadaverine protects Vibrio vulnificus from superoxide stress. , 2007, Journal of microbiology and biotechnology.

[25]  A. Kuraishi,et al.  Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli , 2004, Molecular microbiology.

[26]  J. Nielsen,et al.  In silico genome‐scale reconstruction and validation of the Corynebacterium glutamicum metabolic network , 2009, Biotechnology and bioengineering.

[27]  A. Tkachenko Mechanisms of Protective Functions of Escherichia coli Polyamines Against Toxic Effect of Paraquat, Which Causes Superoxide Stress , 2004, Biochemistry (Moscow).

[28]  M. Ikeda l -Tryptophan Production , 2005 .

[29]  S. Lee,et al.  Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine , 2011, Biotechnology and bioengineering.

[30]  A. Tkachenko,et al.  Adaptive functions of Escherichia coli polyamines in response to sublethal concentrations of antibiotics , 2009, Microbiology.

[31]  Hideyuki Suzuki,et al.  γ-Glutamylputrescine Synthetase in the Putrescine Utilization Pathway of Escherichia coli K-12* , 2008, Journal of Biological Chemistry.

[32]  W K Maas,et al.  Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase , 1980, Journal of bacteriology.

[33]  C. W. Tabor,et al.  Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. , 1979, The Journal of biological chemistry.

[34]  C. W. Tabor,et al.  Polyamines protect Escherichia coli cells from the toxic effect of oxygen , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Kashiwagi,et al.  Modulation of cellular function by polyamines. , 2010, The international journal of biochemistry & cell biology.

[36]  S. Lee,et al.  Systems metabolic engineering of Escherichia coli for L-threonine production , 2007, Molecular systems biology.

[37]  A. Delcour,et al.  Excretion of Endogenous Cadaverine Leads to a Decrease in Porin-Mediated Outer Membrane Permeability , 1999, Journal of bacteriology.

[38]  Y. Yamamoto,et al.  The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. , 1997, Genes & genetic systems.

[39]  E. Kimura,et al.  l -Glutamate Production , 2005 .

[40]  S. Van Dien,et al.  Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. , 2006, Journal of bioscience and bioengineering.

[41]  S. Lee,et al.  Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation , 2007, Proceedings of the National Academy of Sciences.

[42]  Keith E. J. Tyo,et al.  Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. , 2010, Metabolic engineering.

[43]  S. Smirnov,et al.  Molecular cloning and characterization of Escherichia coli K12 ygjG gene , 2003, BMC Microbiology.

[44]  C. Wittmann,et al.  Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. , 2010, Metabolic engineering.

[45]  M. Neely,et al.  Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine , 1996, Journal of bacteriology.

[46]  Christoph Wittmann,et al.  Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. , 2010, Advances in biochemical engineering/biotechnology.

[47]  G. W. Haywood,et al.  The occurrence, subcellular localization and partial purification of diamine acetyltransferase in the yeast Candida boidinii grown on spermidine or putrescine as sole nitrogen source. , 1985, European journal of biochemistry.

[48]  C. W. Tabor,et al.  Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase , 1980, Journal of bacteriology.

[49]  Sang Yup Lee,et al.  The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens , 2004, Nature Biotechnology.

[50]  L. Eggeling,et al.  Handbook of Corynebacterium glutamicum , 2005 .

[51]  Christoph Wittmann,et al.  Respirometric 13C flux analysis--Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. , 2006, Metabolic engineering.

[52]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[53]  G N Cohen,et al.  Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. , 1986, The Journal of biological chemistry.

[54]  S. Choi,et al.  Lysine Decarboxylase Expression by Vibrio vulnificus Is Induced by SoxR in Response to Superoxide Stress , 2006, Journal of bacteriology.

[55]  Masayuki Inui,et al.  Engineering of a Xylose Metabolic Pathway in Corynebacterium glutamicum , 2006, Applied and Environmental Microbiology.

[56]  C. W. Tabor,et al.  Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. , 1973, The Journal of biological chemistry.