Dynamic $L_{\text{2}}$ Output Feedback Stabilization of LPV Systems With Piecewise Constant Parameters Subject to Spontaneous Poissonian Jumps

This letter addresses the $L_{2}$ output feedback stabilization of linear parameter varying systems, where the parameters are assumed to be stochastic piecewise constants under spontaneous Poissonian jumps. We provide sufficient conditions in terms of linear matrix inequalities (LMIs) for the existence of a full-order output feedback controller. Such LMIs, however, can be computationally intractable due to the presence of integral terms. Nevertheless, we show that these LMIs can be equivalently represented by an integral-free LMI, which is computationally tractable. Finally, we provide analytical formulas to construct the controller and illustrate the applicability of the results through examples.

[1]  Péter Gáspár,et al.  Robust Control and Linear Parameter Varying approaches: Application to Vehicle Dynamics , 2013 .

[2]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[3]  Charles Poussot-Vassal,et al.  Semi-Active Suspension Control Design for Vehicles , 2010 .

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[6]  Patrizio Colaneri,et al.  Stability and Stabilization of Continuous-Time Switched Linear Systems , 2006, SIAM J. Control. Optim..

[7]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[8]  Johan Löfberg,et al.  Automatic robust convex programming , 2012, Optim. Methods Softw..

[9]  Jeff S. Shamma,et al.  Analysis and design of gain scheduled control systems , 1988 .

[10]  Gary J. Balas,et al.  Comparing Linear Parameter-Varying Gain-Scheduled Control Techniques for Active Flutter Suppression , 2000 .

[11]  Marcelo D. Fragoso,et al.  Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods , 2007, 2007 European Control Conference (ECC).

[12]  Corentin Briat,et al.  Stability analysis and control of a class of LPV systems with piecewise constant parameters , 2015, Syst. Control. Lett..

[13]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[14]  Dimitri Peaucelle,et al.  Robust Stability Analysis and State Feedback Synthesis for Discrete-Time Systems Characterized by Random Polytopes , 2018, IEEE Transactions on Automatic Control.

[15]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[16]  José Claudio Geromel,et al.  Output feedback control of Markov jump linear systems in continuous-time , 2000, IEEE Trans. Autom. Control..

[17]  Corentin Briat,et al.  Stability Analysis and State-Feedback Control of LPV Systems With Piecewise Constant Parameters Subject to Spontaneous Poissonian Jumps , 2018, IEEE Control Systems Letters.

[18]  Andrew R. Teel,et al.  Stability analysis for stochastic hybrid systems: A survey , 2014, Autom..

[19]  Corentin Briat,et al.  Stability analysis of LPV systems with piecewise differentiable parameters , 2017, IFAC-PapersOnLine.

[20]  Corentin Briat,et al.  Stability analysis and stabilization of LPV systems with jumps and piecewise differentiable parameters using continuous and sampled-data controllers , 2017, Nonlinear Analysis: Hybrid Systems.

[21]  M.H.A. Davis,et al.  Markov Models & Optimization , 1993 .

[22]  Antonis Papachristodoulou,et al.  Positive Forms and Stability of Linear Time-Delay Systems , 2006, CDC.

[23]  Corentin Briat Linear Parameter-Varying and Time-Delay Systems: Analysis, Observation, Filtering & Control , 2014 .

[24]  Olivier Sename,et al.  An $H_{\infty} $ LPV Design for Sampling Varying Controllers: Experimentation With a T-Inverted Pendulum , 2010, IEEE Transactions on Control Systems Technology.