Ensemble Monte Carlo calculation of hole transport in bulk 3C–SiC

In this article the first calculation of hole transport in the 3C phase of SiC is presented. The salient features of the model are the full band-structure computed by the empirical pseudopotential method, a numerically calculated hole-phonon scattering rate and the impact ionization transition rates. The coupling constants necessary to determine the scattering rates have been determined either from available data in the literature or by fitting the calculated mobility values to low field experimental results. The impact ionization transition rates have been determined directly from the band-structure based on a wave-vector dependent dielectric function. The steady state drift velocity as a function of the applied electric field strength is computed for different field directions and doping concentrations. The calculated results show the presence of an anisotropy in the drift velocity for the field applied along different directions, similar to what is found in silicon. The maximum values of the velocity a...

[1]  Q. Wahab,et al.  Ionization rates and critical fields in 4H silicon carbide , 1997 .

[2]  C. Canali,et al.  Hole drift velocity in silicon , 1975 .

[3]  Jian H. Zhao,et al.  Monte Carlo study of electron transport in SiC , 1998 .

[4]  An ensemble Monte Carlo study of high-field transport in β-SiC , 1993 .

[5]  David K. Ferry,et al.  Physics of submicron devices , 1991 .

[6]  K. Brennan,et al.  Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN , 1997 .

[7]  M. Yamanaka,et al.  Temperature dependence of electrical properties of n‐ and p‐type 3C‐SiC , 1987 .

[8]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[9]  J. G. Ruch,et al.  Temperature Dependence of the Transport Properties of Gallium Arsenide Determined by a Monte Carlo Method , 1970 .

[10]  M. Hopkinson,et al.  Avalanche multiplication and breakdown in Ga/sub 0.52/In/sub 0.48/P diodes , 1998 .

[11]  P. Ivanov,et al.  Recent developments in SiC single-crystal electronics , 1992 .

[12]  S. Sriram,et al.  SiC for Microwave Power Transistors , 1997 .

[13]  Clas Persson,et al.  Relativistic band structure calculation of cubic and hexagonal SiC polytypes , 1997 .

[14]  Walter Pötz,et al.  Theory of optical-phonon deformation potentials in tetrahedral semiconductors , 1981 .

[15]  R. J. Wagner,et al.  Electron cyclotron resonance in cubic SiC , 1985 .

[16]  H. Junginger,et al.  Energy Band Structures of Four Polytypes of Silicon Carbide Calculated with the Empirical Pseudopotential Method , 1970 .

[17]  Bude,et al.  Impact ionization in semiconductors: Effects of high electric fields and high scattering rates. , 1992, Physical review. B, Condensed matter.

[18]  Enrico Bellotti,et al.  Calculation of the electron initiated impact ionization transition rate in cubic and hexagonal phase ZnS , 1997 .

[19]  Brey,et al.  Deformation potentials at the valence-band maximum in semiconductors. , 1987, Physical review. B, Condensed matter.

[20]  J. Edgar Prospects for device implementation of wide band gap semiconductors , 1992 .

[21]  Kevin F. Brennan,et al.  Calculation of the wave-vector-dependent interband impact-ionization transition rate in wurtzite and zinc-blende phases of bulk GaN , 1996 .

[22]  K. Brennan,et al.  Comparison of electron and hole initiated impact ionization in zincblende and wurtzite phase gallium nitride , 1997 .

[23]  Robert J. Trew Experimental and Simulated Results of SiC Microwave Power MESFETs , 1997 .

[24]  Dwight L. Woolard,et al.  Determining 4H silicon carbide electronic properties through combined use of device simulation and metal–semiconductor field-effect-transistor terminal characteristics , 1998 .

[25]  M Bakowski,et al.  Simulation of SiC High Power Devices , 1997 .

[26]  Philip G. Neudeck,et al.  Progress in silicon carbide semiconductor electronics technology , 1995 .

[27]  Hans-Erik Nilsson,et al.  Monte Carlo simulation of electron transport in 4H–SiC using a two‐band model with multiple minima , 1996 .

[28]  C. Fong,et al.  ELECTRONIC BAND STRUCTURE AND OPTICAL PROPERTIES OF 3C-SiC, BP, AND BN. , 1972 .

[29]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[30]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[31]  H. Aourag,et al.  Pseudopotential calculations on 3CSiC , 1994 .

[32]  M. Bhatnagar,et al.  Silicon carbide high-power devices , 1996 .

[33]  Methfessel,et al.  Calculated elastic constants and deformation potentials of cubic SiC. , 1991, Physical review. B, Condensed matter.

[34]  K. Brennan,et al.  Theoretical study of hole initiated impact ionization in bulk silicon and GaAs using a wave‐vector‐dependent numerical transition rate formulation within an ensemble Monte Carlo calculation , 1995 .

[35]  Christensen,et al.  Relativistic electronic structure, effective masses, and inversion-asymmetry effects of cubic silicon carbide (3C-SiC). , 1995, Physical review. B, Condensed matter.

[36]  J. D. Wiley Valence-band deformation potentials for the III V compounds , 1970 .

[37]  N. T. Son,et al.  Effective Masses in SiC Determined by Cyclotron Resonance Experiments , 1997 .

[38]  Singh,et al.  Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si(001) substrates. , 1990, Physical review. B, Condensed matter.