Toxicological effects of cyanobacterial metabolites on zebrafish larval development.

[1]  Zhengyu Jin,et al.  Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems , 2021, Critical reviews in food science and nutrition.

[2]  P. Dorrestein,et al.  Mass spectrometry-based metabolomics in microbiome investigations , 2021, Nature reviews. Microbiology.

[3]  A. Covaci,et al.  Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges , 2021, Metabolites.

[4]  A. V. Santos,et al.  Anabaenopeptins: What We Know So Far , 2021, Toxins.

[5]  L. Herfindal,et al.  Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. , 2021, Physiologia plantarum.

[6]  M. Farré,et al.  Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom , 2021, Environmental Sciences Europe.

[7]  Daniel G. Beach,et al.  CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. , 2021, Water research.

[8]  S. Azevedo,et al.  Introduction to cyanobacteria , 2021, Toxic Cyanobacteria in Water.

[9]  S. Sauvé,et al.  Occurrence of microcystins, anabaenopeptins and other cyanotoxins in fish from a freshwater wildlife reserve impacted by harmful cyanobacterial blooms. , 2021, Toxicon : official journal of the International Society on Toxinology.

[10]  E. Pinto,et al.  Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features , 2021, Pharmaceuticals.

[11]  H. Paerl,et al.  Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. , 2020, Environmental science & technology.

[12]  M. F. Fiore,et al.  Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. , 2020, FEMS microbiology ecology.

[13]  Juho Rousu,et al.  Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra , 2020, Nature Biotechnology.

[14]  Trinath Chowdhury,et al.  LPD-12: a promising lipopeptide to control COVID-19 , 2020, International Journal of Antimicrobial Agents.

[15]  X. Gu,et al.  Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. , 2020, Environmental pollution.

[16]  K. Saurav,et al.  Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach , 2020, Toxins.

[17]  J. Caixach,et al.  High Levels of Anabaenopeptins Detected in a Cyanobacteria Bloom from N.E. Spanish Sau-Susqueda-El Pasteral Reservoirs System by LC–HRMS , 2020, Toxins.

[18]  B. Banaigs,et al.  Assessment of the Chemical Diversity and Potential Toxicity of Benthic Cyanobacterial Blooms in the Lagoon of Moorea Island (French Polynesia) , 2020, Journal of Marine Science and Engineering.

[19]  L. T. Tan,et al.  Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets , 2020, Molecules.

[20]  E. Lee,et al.  Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. , 2020, Biotechnology advances.

[21]  S. Gkelis,et al.  New microginins from cyanobacteria of Greek freshwaters. , 2020, Chemosphere.

[22]  A. Bansal,et al.  Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds , 2020 .

[23]  J. Freeman,et al.  Use of Zebrafish in Drug Discovery Toxicology. , 2020, Chemical research in toxicology.

[24]  G. M. Ferreira,et al.  Inhibition of Porcine Aminopeptidase M (pAMP) by the Pentapeptide Microginins , 2019, Molecules.

[25]  Justin J. J. van der Hooft,et al.  The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery , 2019, ACS central science.

[26]  P. Permi,et al.  Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. , 2019, Biochimica et biophysica acta. Biomembranes.

[27]  V. Vasconcelos,et al.  Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach , 2019, Algal Research.

[28]  F. Chow,et al.  Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions , 2019, Algal Research.

[29]  C. Bernard,et al.  Natural Products from Cyanobacteria: Focus on Beneficial Activities , 2019, Marine drugs.

[30]  T. Henry,et al.  Toxicity of Cyanopeptides from Two Microcystis Strains on Larval Development of Astyanax altiparanae , 2019, Toxins.

[31]  E. M. Janssen,et al.  Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. , 2019, Water research.

[32]  Wilfried Rozhon,et al.  Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants , 2019, Molecules.

[33]  A. Rutherford,et al.  Early Archean origin of Photosystem II , 2018, Geobiology.

[34]  E. Pinto,et al.  Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria by UHPLC-DAD-QTOF. , 2020, Rapid communications in mass spectrometry : RCM.

[35]  Todd R. Miller,et al.  Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the nematode Caenorhabditis elegans. , 2019, Chemosphere.

[36]  P. Pevzner,et al.  Dereplication of microbial metabolites through database search of mass spectra , 2018, Nature Communications.

[37]  P. Andrade,et al.  Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety , 2018, International journal of molecular sciences.

[38]  H. Woo,et al.  Identification of small droplets of photosynthetic squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysis , 2018, Letters in applied microbiology.

[39]  David S. Wishart,et al.  MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis , 2018, Nucleic Acids Res..

[40]  S. Haghighat,et al.  Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential , 2018 .

[41]  S. Carmeli,et al.  Microginins from a Microcystis sp. Bloom Material Collected from the Kishon Reservoir, Israel , 2018, Marine drugs.

[42]  C. Gobler,et al.  Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR. , 2018, Aquatic toxicology.

[43]  Hosein Mohimani,et al.  Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra , 2018, Nature Microbiology.

[44]  Kuiwu Wang,et al.  Structural Diversity, Biological Properties and Applications of Natural Products from Cyanobacteria. A Review † , 2017, Marine drugs.

[45]  P. Hrouzek,et al.  Genome mining reveals high incidence of putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl‐AMP ligase genes in biofilm‐forming cyanobacteria , 2017, Journal of phycology.

[46]  J. Kumar,et al.  Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects , 2017, Front. Microbiol..

[47]  P. Dvořák,et al.  A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria) , 2017 .

[48]  J. Blom,et al.  Evolution of Anabaenopeptin Peptide Structural Variability in the Cyanobacterium Planktothrix , 2017, Front. Microbiol..

[49]  D. O. Alvarenga,et al.  Tropical cyanobacteria and their biotechnological applications , 2017 .

[50]  Lei Chen,et al.  Versatility of hydrocarbon production in cyanobacteria , 2017, Applied Microbiology and Biotechnology.

[51]  M. Stefanelli,et al.  Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation , 2017, Archives of Toxicology.

[52]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[53]  J. Meriluoto,et al.  Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria , 2015, Marine drugs.

[54]  E. Dittmann,et al.  Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. , 2015, Trends in microbiology.

[55]  W. Schwab,et al.  Terpene glucoside production: Improved biocatalytic processes using glycosyltransferases , 2015 .

[56]  P. Gibbs,et al.  Indole Alkaloids from Fischerella Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model , 2014, Toxins.

[57]  Q. Catherine,et al.  A review of current knowledge on toxic benthic freshwater cyanobacteria--ecology, toxin production and risk management. , 2013, Water research.

[58]  Anton J. Enright,et al.  The zebrafish reference genome sequence and its relationship to the human genome , 2013, Nature.

[59]  M. Sánchez-Contreras,et al.  Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. , 2013, Aquatic toxicology.

[60]  G. A. Conserva,et al.  Acute effects of three Geitlerinema spp. (Cyanobacteria) extracts administrated in mice: symptoms and histopathological aspects , 2013, Phytochemistry Reviews.

[61]  P. Permi,et al.  Anabaenolysins, Novel Cytolytic Lipopeptides from Benthic Anabaena Cyanobacteria , 2012, PloS one.

[62]  J. Schopf,et al.  The Fossil Record of Cyanobacteria , 2012 .

[63]  M. Lopes-Ferreira,et al.  Inflammatory effects of the toxic cyanobacterium Geitlerinema amphibium. , 2011, Toxicon : official journal of the International Society on Toxinology.

[64]  J. Białczyk,et al.  Determination of some cyanopeptides synthesized by Woronichinia naegeliana (Chroococcales, Cyanophyceae) , 2011 .

[65]  M. Colombini,et al.  Analytical pyrolysis with in situ thermally assisted derivatisation, Py(HMDS)-GC/MS, for the chemical characterization of archaeological birch bark tar , 2011 .

[66]  Caroline Souza Pamplona Silva,et al.  Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. , 2011, Microbiological research.

[67]  T. Sano,et al.  Oscillatorin, a Chymotrypsin Inhibitor from Toxic Oscillatoria agardhii. , 2010 .

[68]  T. Kristensen,et al.  A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain , 2009, BMC Genomics.

[69]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[70]  L. Carvalho,et al.  Review of toxic species of Cyanobacteria in Brazil , 2008 .

[71]  S. Ru,et al.  Evidence for the production of a proteinaceous hemolytic exotoxin by wild-type strain of Synechocystis sp. PCC 6803 (Cyanobacteria) , 2008, Journal of Applied Phycology.

[72]  P. Gibbs,et al.  The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. , 2007, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[73]  Lenka Šejnohová,et al.  Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: Toward an understanding of metabolic diversity , 2006, Peptides.

[74]  M. Welker,et al.  Cyanobacterial peptides - nature's own combinatorial biosynthesis. , 2006, FEMS microbiology reviews.

[75]  A. Knoll,et al.  The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[77]  H. Yabuta,et al.  Detection of mono- and bicyclic alkanes and their characteristics in Neogene sediments of the Shinjo basin, Japan , 2002 .

[78]  S. Carmeli,et al.  Protease inhibitors from a water bloom of the cyanobacterium Microcystis aeruginosa , 2001 .

[79]  M. Azevedo,et al.  Geitlerinema unigranulatum, a common tropical cyanoprokaryote from freshwater reservoirs in Brazil , 2000 .

[80]  T. Sano,et al.  A 3-amino-10-chloro-2-hydroxydecanoic acid-containing tetrapeptide from Oscillatoria agardhii , 1997 .

[81]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[82]  W. Dodds,et al.  THE ECOLOGY OF NOSTOC , 1995 .

[83]  K. Yamaguchi,et al.  Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa , 1993 .