Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling

We present semi-implicit (implicit-explicit) formulations of the compressible Navier-Stokes equations (NSE) for applications in nonhydrostatic atmospheric modeling. The compressible NSE in nonhydrostatic atmospheric modeling include buoyancy terms that require special handling if one wishes to extract the Schur complement form of the linear implicit problem. We present results for five different forms of the compressible NSE and describe in detail how to formulate the semi-implicit time-integration method for these equations. Finally, we compare all five equations and compare the semi-implicit formulations of these equations both using the Schur and No Schur forms against an explicit Runge-Kutta method. Our simulations show that, if efficiency is the main criterion, it matters which form of the governing equations you choose. Furthermore, the semi-implicit formulations are faster than the explicit Runge-Kutta method for all the tests studied, especially if the Schur form is used. While we have used the spectral element method for discretizing the spatial operators, the semi-implicit formulations that we derive are directly applicable to all other numerical methods. We show results for our five semi-implicit models for a variety of problems of interest in nonhydrostatic atmospheric modeling, including inertia-gravity waves, density current (i.e., Kelvin-Helmholtz instabilities), and mountain test cases; the latter test case requires the implementation of nonreflecting boundary conditions. Therefore, we show results for all five semi-implicit models using the appropriate boundary conditions required in nonhydrostatic atmospheric modeling: no-flux (reflecting) and nonreflecting boundary conditions (NRBCs). It is shown that the NRBCs exert a strong impact on the accuracy and efficiency of the models.

[1]  Ulrich Schättler,et al.  Requirements and problems in parallel model development at DWD , 2000, Sci. Program..

[2]  Véronique Ducrocq,et al.  Le projet AROME , 2005 .

[3]  Francis X. Giraldo,et al.  A high‐order triangular discontinuous Galerkin oceanic shallow water model , 2008 .

[4]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[5]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[6]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[7]  Francis X. Giraldo,et al.  A Spectral Element Solution of the Klein-Gordon Equation with High-Order Treatment of Time and Non-Reflecting Boundary , 2010 .

[8]  Francis X. Giraldo,et al.  Semi‐implicit time‐integrators for a scalable spectral element atmospheric model , 2005 .

[9]  M. Tapp,et al.  A non‐hydrostatic mesoscale model , 1976 .

[10]  T. Segawa,et al.  Nonhydrostatic Atmospheric Models and Operational Development at JMA , 2007 .

[11]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[12]  D. Burridge,et al.  A split semi‐implict reformulation of the Bushby‐Timpson 10‐level model , 1975 .

[13]  Francis X. Giraldo,et al.  A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates , 2008, J. Comput. Phys..

[14]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[15]  André Robert,et al.  A SEMI-IMPLICIT SCHEME FOR GRID POINT ATMOSPHERIC MODELS OF THE PRIMITIVE EQUATIONS , 1971 .

[16]  Louis J. Wicker,et al.  Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .

[17]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[18]  G. Doms,et al.  Semi-Implicit Scheme for the DWD Lokal-Modell , 2000 .

[19]  Z. Janjic A nonhydrostatic model based on a new approach , 2002 .

[20]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[21]  Francis X. Giraldo,et al.  The Lagrange-Galerkin Spectral Element Method on Unstructured Quadrilateral Grids , 1998 .

[22]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[23]  Nash'at Ahmad,et al.  Euler solutions using flux‐based wave decomposition , 2007 .

[24]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[25]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[26]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[27]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[28]  M. Cullen A test of a semi‐implicit integration technique for a fully compressible non‐hydrostatic model , 1990 .

[29]  Francis X. Giraldo,et al.  High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere , 2006, J. Comput. Phys..

[30]  Francis X. Giraldo,et al.  Hybrid Eulerian-Lagrangian Semi-Implicit Time-Integrators , 2006, Comput. Math. Appl..

[31]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[32]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .

[33]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[34]  Pierre Benard,et al.  Stability of Semi-Implicit and Iterative Centered-Implicit Time Discretizations for Various Equation Systems Used in NWP , 2003, physics/0304114.

[35]  Ronald B. Smith The Influence of Mountains on the Atmosphere , 1979 .

[36]  P. Woodward,et al.  Application of the Piecewise Parabolic Method (PPM) to meteorological modeling , 1990 .

[37]  John R. Dea,et al.  High-Order Non-Reflecting Boundary Conditions for the Linearized 2-D Euler Equations: No Mean Flow Case , 2009 .

[38]  Monique Tanguay,et al.  A Semi-implicit Send-Lagrangian Fully Compressible Regional Forecast Model , 1990 .

[39]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[40]  Jimy Dudhia,et al.  Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations , 2007 .

[41]  Jean Côté,et al.  The CMC-MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation , 2002 .