Technical Note : Complexity of Stage Semantics in Argumentation Frameworks

In this work, we answer two questions about the complexity of semi-stable semantics for abstract argumentation frameworks raised by Du nne and Caminada (2008): we show Π2 -completeness for the problem of deciding whether an argume nt is skeptically accepted, and respectively, Σ2 -completeness for the problem of deciding whether an argument is credulously accepted under the semi-stable seman tics. Furthermore, we extend these complexity bounds to the according decision problems for tage semantics as introduced by Verheij (1997). We also discuss two approaches towa rds tractability: first, we prove that the problems under consideration are fixed-param eter tractable with respect to tree-width; second, we show that the problems remain intrac table when considering frameworks of bounded cycle-rank. 1Institute for Information Systems 184/2, Technische Unive rsität Wien, Favoritenstrasse 9-11, 1040 Vienna, Austria. E-mail: dvorak@dbai.tuwien.ac.at 2Institute for Information Systems 184/2, Technische Unive rsität Wien, Favoritenstrasse 9-11, 1040 Vienna, Austria. E-mail: woltran@dbai.tuwien.ac.at Copyright c © 2009 by the authors

[1]  Pietro Baroni,et al.  Semantics of Abstract Argument Systems , 2009, Argumentation in Artificial Intelligence.

[2]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[3]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[4]  Trevor J. M. Bench-Capon,et al.  Coherence in finite argument systems , 2002, Artif. Intell..

[5]  L. Eggan Transition graphs and the star-height of regular events. , 1963 .

[6]  Martin Caminada,et al.  Computational Complexity of Semi-stable Semantics in Abstract Argumentation Frameworks , 2008, JELIA.

[7]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[8]  Yannis Dimopoulos,et al.  Graph theoretical structures in logic programs and default theories , 1996 .

[9]  P. W. Hunter,et al.  Complexity and infinite games on finite graphs , 2007 .

[10]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[11]  Stephan Kreutzer,et al.  Digraph measures: Kelly decompositions, games, and orderings , 2007, SODA '07.

[12]  Bart Verheij,et al.  Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages , 1999 .

[13]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..